Tranexamic Acid for Cesarean Delivery: Evidence of Fibrinolysis?

Sebastian M. Seifert, MD, Susan M. Goobie, MD, FRCPC, Kara G. Fields, MS, Michaela K. Farber, MD, MS

PII: S0002-9378(22)00673-1
DOI: https://doi.org/10.1016/j.ajog.2022.08.031
Reference: YMOB 14696

Received Date: 15 August 2022
Accepted Date: 16 August 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc.
Tranexamic Acid for Cesarean Delivery: Evidence of Fibrinolysis?

Sebastian M. SEIFERT1*, MD; Susan M. GOOBIE, MD, FRCPC2, Kara G. FIELDS1, MS; Michaela K. FARBER1, MD, MS

1 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
2 Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States

* Corresponding author

CONFLICTS OF INTEREST:
The authors report no conflicts of interest.

CORRESPONDING AUTHOR:
Sebastian M Seifert, MD
Brigham & Women’s Hospital
Department of Anesthesiology, Perioperative and Pain Medicine
Harvard Medical School
75 Francis Street
Boston, MA 02115, United States
Email: sseifert@bwh.harvard.edu

Tel: (617) 759-1609

WORD COUNT: 397
Dear Editors:

We have read the letter "Tranexamic Acid for Cesarean Delivery: Induction of a Regimen for Post-Partum Hemorrhage?" in response to our publication "Tranexamic Acid Administered During Cesarean Delivery in High-Risk Patients: Maternal Pharmacokinetics, Pharmacodynamics, and Coagulation Status." We agree that using systemic whole blood to detect postpartum hyperfibrinolysis with rotational thromboelastometry (ROTEM®) may have limitations. Consistent with this, we saw no evidence of hyperfibrinolysis in peripheral samples by comparing EXTEM vs. APTEM clotting time (CT) and maximum clot firmness (MCF). Lack of peripheral hyperfibrinolysis may indicate an absence of hyperfibrinolysis, or early localized hyperfibrinolysis sequestered within the uterus. Despite these limitations, ROTEM has previously identified profound hyperfibrinolysis and can demonstrate coagulopathy during severe postpartum hemorrhage (PPH).

The authors inquire whether our FIBTEM testing indicated platelet-driven clot retraction and not actual clot lysis. Our EXTEM and FIBTEM results showed no evidence of this, as EXTEM maximum lysis (ML) was zero in 18 (90%) of our patients, and no lysis > 15% was detected in any sample from 30 minutes to 5 hours. There was no control group as our primary endpoint was to evaluate the central tendency and variability of TXA plasma concentrations after 1g given intravenously. We agree that studies are warranted to identify which assays detect clinically significant peripheral or localized hyperfibrinolysis, such as D-dimers or plasmin-antiplasmin complexes, and which patients would benefit most from antifibrinolytic therapy. Our study does provide evidence against significant systemic hyperfibrinolysis on ROTEM at the reported TXA plasma concentrations during PPH.
We found a weak positive correlation between TXA concentration and both EXTEM MCF ($r = 0.32$, 95% CI 0.21, 0.46) and FIBTEM MCF ($r = 0.30$, 95% CI, 0.16, 0.44). While TXA has been associated with increased MCF, it is reassuring that the MCF in our cohort remained within the normal range for pregnancy. As the authors note, the dynamic process of PPH with fluid shifts during resuscitation may alter TXA concentrations. If the correlation of plasma TXA concentrations with MCF was caused erroneously through hemodilution or hemoconcentration, then that is reassuring in terms of the thrombosis risk of TXA. We agree that additional work is needed in this area, as our study was not powered to evaluate these secondary aims. We also agree that further studies are warranted to refine the optimal threshold for TXA plasma concentrations in the context of PPH to optimize effective and safe dosing regimens.

References:

