Tranexamic Acid for Cesarean Delivery: Induction of a regimen for post-partum hemorrhage?

Erik R. Strauss, M.D., Kofi VanDyck, M.D., Michael A. Mazzeffi, M.D.

PII: S0002-9378(22)00672-X
DOI: https://doi.org/10.1016/j.ajog.2022.08.030
Reference: YMOB 14695

Received Date: 15 July 2022
Accepted Date: 17 August 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc.
Tranexamic Acid for Cesarean Delivery: Induction of a regimen for post-partum hemorrhage?

Erik R. Strauss, M.D.¹; Kofi VanDyck, M.D.²; and Michael A. Mazzeffi, M.D.³

¹Department of Anesthesiology, University of Maryland School of Medicine
²Department of Anesthesiology, University of Oklahoma Health Sciences Center
³Department of Anesthesiology, George Washington University School of Medicine and Health Sciences

The authors report no conflicts of interest

Corresponding Author: Erik Strauss
22 S. Greene St. Baltimore, MD 21201
email: estrauss@som.umaryland.edu

Word Count: 396
Dear Editor,

We have read with great interest the study by Seifert et al. who assessed the pharmacokinetics (PK) and pharmacodynamics (PD) of tranexamic acid (TXA) administered to women at risk for post-partum hemorrhage (PPH) undergoing cesarean delivery. A combined assessment of PK and PD is meaningful in elucidating a clinically effective level of TXA as multiple modifiers of bleeding and fibrinolysis interact during PPH. The authors empirically selected a target TXA plasma concentration (>10 mg/L). All patients had a TXA level >10 mg/L at 1 hour, which was maintained in more than half of patients at 3 hours. While this data seems to suggest that the studied TXA dosing should cover a post-partum surge of tPA, it is difficult to assess the overall hemostatic function at the patient level. TXA concentration per se does not prove antifibrinolytic efficacy or clinical hemostasis.

To assess the PD, the authors used a serially measured tissue factor-activated test (EXTEM) of rotational thromboelastometry (ROTEM®; Instrumentation Laboratory, Bedford, MA). There are several potential issues with using EXTEM in the assessment of localized or systemic fibrinolysis. First, EXTEM maximum clot firmness (MCF) or maximum lysis (ML) parameters are rather insensitive to in vivo plasmin generation reflected on D-dimer or plasmin-antiplasmin complex levels.2 A half-life of tPA is rather short (5 min)3, and EXTEM test performed in peripheral venous blood is unlikely to capture localized fibrinolysis in the post-partum uterus. The low incidence of hyperfibrinolysis may simply represent the insensitivity of EXTEM test. Second, even if higher ML values were present, it is important to consider the possibility of platelet-mediated clot retraction. Arnolds and Scavone previously observed increased clot lysis (>3%) at 30 min (Ly30) on kaolin-activated thromboelastography (TEG) in 12.7% (15 of 118) of 118 PPH cases.4 However, simultaneously performed functional fibrinogen test using abciximab
failed to demonstrate any clot lysis in 13 of the 15 cases (86.7%). Clot retraction is driven by platelets, and thus a platelet inhibitor allows differentiation from clot lysis. Seifert, et al. also performed an assay (FIBTEM) with a platelet inhibitor, cytochalasin D, but the results were not reported. Third, the authors comment “TXA concentration was associated with enhanced clot strength” was based on a weak positive correlation between TXA concentration and EXTEM-MCF ($r = 0.32$). For cases with significant bleeding, it is plausible that the accompanying hemodilution lowered both TXA and MCF and caused this correlation.

