SARS-CoV-2 Immunoglobulin G Antibody Levels in Infants Following Messenger RNA COVID-19 Vaccination During Pregnancy

Nir Kugelman, MD, Chen Nahshon, MD, Pninit Shaked-Mishan, PhD, Ofer Lavie, MD, Nili Stein, MPH, Reuven Kedar, MD, Dan Waisman, MD

PII: S0002-9378(22)00570-1
DOI: https://doi.org/10.1016/j.ajog.2022.07.016
Reference: YMOB 14615

Received Date: 8 April 2022
Revised Date: 3 July 2022
Accepted Date: 13 July 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Inc. All rights reserved.
SARS-CoV-2 Immunoglobulin G Antibody Levels in Infants Following Messenger RNA COVID-19 Vaccination During Pregnancy

Nir KUGELMAN, MD, a,b Chen NAHSHON, MD, a,b Pninit SHAKED-MISHAN, PhD, c Ofer LAVIE, MD, a,b Nili STEIN, MPH, d Reuven KEDAR, MD, a,b Dan WAISMAN, MD b,e

Haifa, Israel

a Department of Obstetrics & Gynecology, Carmel Medical Center, Haifa, Israel
b Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
c Clinical Serology and Virology Laboratory, Carmel Medical Center, Haifa, Israel
d Community Medicine and Epidemiology, the Lady Davis Carmel Medical Center
e Department of Neonatology, Carmel Medical Center, Haifa, Israel

Disclosure Statement
The authors report no conflicts of interest.

Source of Funding
No funding was received.

Corresponding author:
Nir Kugelman, MD
Department of Obstetrics & Gynecology, Carmel Medical Center, 7 Michal St., Haifa, Israel, Tel: +972-4-825-0345, Fax: +972-4-825-0713
Email: nirkug@gmail.com

Word count: 500
Objective: Infants are at risk for developing a severe COVID-19 illness\(^1\) and are a source of virus spread.\(^2\) Recent studies have demonstrated reduction of SARS-CoV-2 positive tests in infants\(^3\) and COVID-19 infant hospitalizations following maternal COVID-19 vaccination.\(^4\) BNT162b2 messenger RNA (mRNA) COVID-19 vaccination during the second trimester of pregnancy was associated with high neonatal SARS-CoV-2 immunoglobulin G (IgG) levels at birth.\(^5\) Our aim was to evaluate SARS-CoV-2 IgG levels in infants up to six months of age following maternal vaccination during the second trimester of pregnancy.

Study Design: This prospective cohort study, performed between September 2021 and January 2022, included infants at the age of 3-6 months, of mothers vaccinated with the second BNT162b2 (Pfizer/BioNTech) mRNA COVID-19 vaccine. The second dose was received 3 weeks following the first dose according to the standard established for Israel at the time, during the second trimester of pregnancy, and women were not previously diagnosed with COVID-19 (based on self-reported information). All infants had a SARS-CoV-2 IgG antibody level measurement at birth collected by umbilical cord sampling. None of the infants were reported to have a COVID-19 infection during the study period. Following recruitment, we obtained venous blood from each infant which was assessed by SARS-CoV-2 IgG II Quant Abbott@, a two-step chemiluminescent microparticle immunoassay used for the quantitative determination of IgG antibodies. Correlations between infant antibody titers, feto-maternal and infant characteristics, and the time interval from maternal vaccination to the infant follow-up antibody test were analyzed.

Results: Antibody levels were measured for 40 infants. The median (range) level of IgG antibodies at birth was 2790.3 (350.1-13405.0) AU/ml and declined to a median (range) of 199 (18.4-904.3) AU/ml at a median (range) age of 19.2 (14.6-27.6) weeks. Three of 40 (7.5%) infants had a negative (<50 AU/ml) antibody test at a median (range) age of 26.1 (21.5-26.1) weeks. No differences were found between the different clinical and demographic characteristics of breastfed and non-breastfed infants. The median (range) level of SARS-CoV-2 IgG levels at follow-up was higher in the 28 breastfed infants (232.0 [105.7-904.3] AU/ml) than in the 12 non-breastfed infants (145.3 [18.4 to 575.5] AU/ml) (p=0.02).
Multivariable analysis revealed that infant SARS-CoV-2 IgG antibody titers at follow-up were positively correlated with SARS-CoV-2 IgG levels at birth and breastfeeding, yet negatively correlated with time passed from maternal second vaccine dose. For each week that passed since maternal second vaccine dose, SARS-CoV-2 IgG antibody levels decreased by 5.8% (95% CI, -8.6 to -3.9%, p<0.001). Breastfeeding was significantly and independently associated with higher levels of SARS-CoV-2 IgG levels (absolute difference, 75.1%; 95% CI, 28.4% to 138.7%, P=0.001). Moreover, the median (IQR) remaining percentage of SARS-CoV-2 IgG antibodies from birth to follow-up was significantly higher in breastfed infants compared to non-breastfed infants (8% (6.5; 11.8) vs 5.3% (2.9; 9.1), p=0.021) (Figure 1).

Conclusions: Our findings suggest that maternal COVID-19 vaccination during pregnancy may possibly provide protection from COVID-19 in early infancy, with SARS-CoV-2 IgG antibody levels enhanced by breastfeeding and sustained at least until six months of age.
REFERENCES

Figure Legends:

Figure 1. Correlation between the remaining percentage of the SARS-CoV-2 IgG antibodies at follow-up and duration from birth for breastfed and non-breastfed infants: A- From 100% SARS-CoV-2 IgG antibodies at birth to remaining percentage at follow-up, B- Focus on relevant time period of infant follow-up tests; breastfed infants: r=-0.62; 95% CI, -0.80 to -0.31; P<0.001, non-breastfed infants r=-0.84; 95% CI, -0.95 to -0.50; P=0.001
Figure 1. Correlation between the remaining percentage of the SARS-CoV-2 IgG antibodies at follow-up and duration from birth for breastfed and non-breastfed infants.