Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: implications for fetal development and offspring wellbeing

Eleonora Rubini, MSc; Nicole Schenkelaars, MD; Melek Rousian, MD, PhD; Kevin D. Sinclair, PhD; Lieske Wekema, MSc; Marijke M. Faas, PhD; Régine P. M. Steegers-Theunissen, MD, PhD; Sam Schoenmakers, MD, PhD

Introduction

The World Health Organization recommends pregnant women to adhere to a healthy diet, exercise regularly, and take 0.4-mg folic acid supplement per day to ensure a healthy pregnancy and improve pregnancy outcomes. These guidelines are strongly recommended because, during pregnancy, there is a high demand for essential vitamins required to support basic cellular processes involved in developmental programming of fetal and maternal tissues. These include B vitamins involved in one-carbon metabolism (e.g., vitamin B9/11 [folate] and...
vitamin B₁₂ [cobalamin]). Dietary intake of B vitamins is known to influence and maintain a healthy maternal gut microbiota during pregnancy, which plays a major role in nutrient acquisition and absorption, immune remodeling, protection against infections, and shaping the fetal immune system and gut microbiota. In addition, certain strains of gut bacteria have been shown to biosynthesize B vitamins, which demonstrates that one-carbon metabolism and the gut microbiota are involved in pregnancy health. Derangements in one-carbon metabolism, as a result of vitamin deficiencies, are a risk factor for developmental disorders and adverse pregnancy outcomes, including neural-tube defects (NTDs), miscarriages, preterm birth, and low birthweight. Similarly, perturbations of the maternal gut microbiota (termed dysbiosis) are also a risk factor for adverse pregnancy outcomes, such as miscarriage and intrauterine growth restriction, and recent evidence highlights potential long-term effects of maternal dysbiosis on offspring metabolic and neurologic health, resulting in obesity and mental health disorders.

The prevalence of obesity (body mass index [BMI] >30 kg/m²) among pregnant women is increasing worldwide, and obese pregnant women are more likely to adhere to an unhealthy diet, exercise less, and be less compliant with daily folic acid supplementation. Therefore, it is common to find one-carbon metabolism deficiencies and gut dysbiosis in obese pregnant women, which expose the mother and fetus to the aforementioned health risks. However, little is known about the interaction between the gut microbiota and one-carbon metabolism during pregnancy in obese and non-obese women.

Taking these issues into account, this article aims to: (1) summarize the evidence of interactions between obesity, one-carbon metabolism, and the gut microbiota; (2) provide evidence that gut dysbiosis mediates derangements in one-carbon metabolism in obese individuals; and (3) report the risks for offspring health in obese pregnancies. Understanding interactions between the gut microbiota and one-carbon metabolism in obese and non-obese women will favor more targeted interventional approaches to improve treatment during pregnancy, prevent adverse pregnancy outcomes, and improve offspring health.

One-Carbon Metabolism

One-carbon metabolism is composed of the interlinked folate (green arrows) and methionine (red arrows) cycles and the transsulfuration pathway (blue arrow). Metabolites within the pathway can originate from the diet (a), from gut microbiota (b), and/or from synthetic supplementation (c). Substrates: Bet, Chol, Cth, DHF, Hcy, 5,10-CH₂-THF, 5-m-THF, Met, THF, SAM, and SAH. Cofactors: vitamins B2, B6, and B12. Image adapted from a previous publication from the authors.

pregnancy by providing substrates for the biosynthesis of DNA, RNA, proteins, and lipids, which are necessary for developmental processes such as cell replication and differentiation.24–26 Adequate periconceptional folic acid and vitamin B\textsubscript{12} levels increase the probability of fertilization success,27 improve preimplantation embryo quality,28 increase implantation rates, reduce the incidence of NTDs, and improve live birth rates.29 In addition, folate requirements are higher in pregnancy because of uterine- and placental-cell proliferation, fetal-tissue differentiation and growth, and increased erythrocyte production.30 Folate and/or vitamin B\textsubscript{12} deficiencies can lead to adverse pregnancy outcomes. It is well established that folate deficiency is a severe risk factor for fetal NTDs and other congenital anomalies,30–32 whereas vitamin B\textsubscript{12} deficiency during early pregnancy is a risk factor for preterm birth and adverse offspring neurodevelopment.11,12 Moreover, elevated homocysteine is associated with miscarriages, gestational hypertension, and preterm birth.13 Therefore, pregnant women are strongly recommended to consume micronutrient-rich foods and use folic acid supplementation from as early as 5 to 6 months before conception up to 12 weeks of gestation, preferably continuing until the end of pregnancy, to enhance fertility, prevent pregnancy complications, and reduce the risk of impairments to fetal development.24,33–35

Obesity and one-carbon metabolism during pregnancy

Obesity is characterized by high adiposity, associated with a wide range of health risks including insulin resistance, cardiovascular diseases, and metabolic and endocrine imbalances, and contributes to a chronic inflammatory physiological state.36,37 One of the etiologic factors that induces obesity is

TABLE

Summary of most common bacterial phyla of the human gut microbiota and their role in health and disease

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Genera</th>
<th>One-carbon metabolites biosynthesis</th>
<th>Biological activity</th>
<th>Function</th>
<th>Health-related associations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteroidetesa</td>
<td>Bacteroides Prevotella</td>
<td>Vitamin B\textsubscript{2}, B\textsubscript{9} and B\textsubscript{12} Folate</td>
<td>Butyrate production (fermentation) Bile acid metabolism Transformation of toxic compounds Degradation of carbohydrates</td>
<td>Protection against inflammation Nourishment of intestinal barrier ↓ in obesity ↓ in IBS</td>
<td>Magnúsdóttir et al, 81 2015; Engevik et al, 57 2019; Stojanov et al, 16 2020; Thomas et al, 103 2011; Ottman et al, 47 2012; Vaiserman et al, 108 2020; Santacruz et al, 109 2010</td>
<td></td>
</tr>
<tr>
<td>Firmicutesb</td>
<td>Lactobacillus Bacillus Clostridium Enterococcus Ruminococcus</td>
<td>Vitamin B\textsubscript{23} Folate</td>
<td>Butyrate production (fermentation) Extraction of energy from food</td>
<td>↑ in obesity ↑ with age ↑ with weight gain</td>
<td>Magne et al, 59 2020; Magnúsdóttir et al, 81 2015; Ottman et al, 58 2012; Vaiserman et al, 108 2020</td>
<td></td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>Bifidobacterium</td>
<td>Folate</td>
<td>Acetate production (fermentation) Stimulation of the immune system Resistance to colonization by pathogens Probiotic properties in the colon</td>
<td>Beneficial for treating gastrointestinal diseases</td>
<td>Strozzi and Mogna, 82 2008; Picard et al, 10 2005</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>Escherichia coli</td>
<td>Vitamin B\textsubscript{2} Folate</td>
<td>Aerobic activity Minor anaerobic fermentation</td>
<td>Protection against inflammation and pathogens ↑ in intestinal diseases</td>
<td>Magnúsdóttir et al, 81 2015; Rizzatti et al, 111 2017; Shin et al, 112 2015; Christofi et al, 113 2019</td>
<td></td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>Fusobacterium</td>
<td>Vitamin B\textsubscript{2} and B\textsubscript{12} Folate</td>
<td>Anaerobic activity</td>
<td>Protection against pathogens ↑ in colorectal cancer</td>
<td>Magnúsdóttir et al, 81 2015; Zhou et al, 113 2018; Keye et al, 115 2018; Wu et al, 116 2019</td>
<td></td>
</tr>
<tr>
<td>Verrucomicrobia</td>
<td>Akkermansia</td>
<td>N/A</td>
<td>Anaerobic activity Mucus degradation</td>
<td>↑ in long-term fasting ↑ in malnutrition</td>
<td>Belzer et al, 117 2012</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{DHF, dihydrofolic acid; IBS, irritable bowel syndrome; N/A, not applicable; THF, tetrahydrofolic acid.}\)

\(\text{a Bacteroidetes and Firmicutes constitute 90% of the gut bacteria population. The term folate comprises the active forms of folate DHF and THF; b Only 50% of Firmicutes have vitamin B2 biosynthetic capacity; c Only Lactobacillus has sufficient evidence for folate production.}\)

excessive caloric input owing to consumption of an unbalanced diet predominantly composed of nutritionally poor and high-caloric food, which often leads to micronutrient deficiencies. In particular, low levels of vitamin B12 and folate are associated with high BMI, and it is known that, despite regular folic acid supplement use, obese women retain low fasting serum folate levels and have a lower folate absorption phase than normal-weight women. This is also observed in early, mid, and late pregnancy, when obese women tend to have lower serum vitamin B12 and folate concentrations, and higher odds of vitamin B12 and folate deficiency than non-obese pregnant women. In fact, offspring of obese women have a 2-fold higher risk of being born with NTDs despite maternal folic acid supplement use. With regard to homocysteine, increased levels during mid-pregnancy are observed with increasing pre-pregnancy BMI. The emerging consensus is that the requirements for one-carbon metabolites during all stages of pregnancy are not met in obese women despite micronutrient supplementation. Therefore, levels of one-carbon metabolites should be monitored carefully and, if necessary, be improved by intervention strategies that involve lifestyle counseling with a focus on diet. For the time being, although the evidence is disputable, obese women are recommended to take higher doses of folic acid during pregnancy than non-obese women.

The Gut Microbiota

The human gut microbiota consists of a complex and dynamic mixture of microorganisms, including bacteria, viruses, and fungi, which coexist in the gastrointestinal tract. The gut microbiota is shaped in early life and more definitively established in adulthood, depending on age, ethnicity, antibiotics, medication, and, importantly, diet. For the purpose of the current review, only bacterial microbiota will be addressed because of the availability of literature and our current understanding of its relationship to maternal one-carbon metabolism.

Bacterial microbiota perform essential activities such as food digestion, release of short-chain fatty acids for energy and metabolic processes, immunomodulation, and antimicrobial protection, and they are important suppliers of essential vitamins including intermediates of one-carbon metabolism. An overview of the most important bacterial phyla and genera in the human gut and their primary roles in health and disease is provided in the Table. In general, healthy gut microbiota has a stable and balanced composition of Firmicutes and Bacteroidetes and, to lesser extent, Actinobacteria, Proteobacteria, and Verrucomicrobia. Firmicutes are mostly responsible for carbohydrate metabolism and energy extraction, whereas Bacteroidetes have more mixed functions including degradation of polysaccharides, activation of the immune system, regulation of pathogenic gut bacteria, and transformation of toxic compounds. Actinobacteria, Proteobacteria, and Verrucomicrobia are involved in decomposition of organic compounds, supporting the immune system, and mucus degradation. Dysbiosis occurs when there is a disruption in the composition of the residential bacterial community, either in number or in phyla or genera predominance, resulting in loss of gut homeostasis and bacterial function, which is associated with inflammatory bowel diseases and metabolic disorders such as obesity and diabetes mellitus type 2.

Obesity and the maternal gut microbiota during pregnancy

A healthy maternal gut microbiota is essential during pregnancy because it contributes to obstetrical outcomes and long-term health sequelae for the mother and child. Various studies have shown that the gut microbiota remodels and fluctuates during pregnancy depending on gestational age. In particular, a substantial shift in bacteria phylogenies occurs from the second to third trimester, characterized by a reduction in bacterial richness (alpha diversity), with predominance of Proteobacteria and Actinobacteria, contributing to the inflammatory response in pregnancy, and a decrease in butyrate-producing bacteria, which have anti-inflammatory effects (Table). Rodent studies report the same phylogenetic patterns but a dominance of Proteobacteria in early pregnancy. Other experimental studies have shown that transplantation of third-trimester microbiota into germ-free mice increases fat deposition, inflammation, and insulin sensitivity compared with transplantation of first-trimester microbiota into germ-free mice. This suggests that the gut microbiota may adapt to sustain the superior metabolic demands of pregnancy and to support the immune system. Recently, it has been shown that changes in the gut microbiota correlate to changes in the maternal immune response in pregnant mice, suggesting a role for the maternal microbiota in adapting the maternal immune response to pregnancy to protect the semi-allogeneic fetus. In contrast to studies showing changes in the maternal microbiota, there are also studies that report a relatively stable microbiota throughout gestation given that pregnant and nonpregnant women have a similar core microbiota of Firmicutes and Bacteroidetes, which are responsible for the provision of nutrition and vitamins to the host and other gut microbiota (Table). Therefore, further research of the impact of pregnancy on maternal microbiota during pregnancy is necessary.
symptom of gut inflammation and intestinal permeability.69–72 Gomez et al73 (2016) and Zacarias et al74 (2018) report that obese pregnant women have a high Firmicutes-to-Bacteroidetes ratio, an increase in Actinobacteria in mid and late pregnancy, and a decrease in bacterial diversity in the third trimester of pregnancy compared with non-obese women.73,74 According to this evidence, obesity during pregnancy can lead to a change in bacterial phyla that is not observed in non-obese pregnancies. Such microbial shifts are also observed in animal models including rodents.65,74–77 Various studies have shown a causal role for the gut microbiota in obese individuals regarding weight gain and metabolic disturbances. Turnbaugh et al78 (2006) demonstrated that germ-free mice inoculated with gut microbiota of obese mice, consisting of a high Firmicutes-to-Bacteroidetes ratio, gain more body fat and acquire metabolic disturbances. In addition, Ridaura et al79 (2013) observed that transplanting human fecal microbiota from obese individuals to germ-free mice on a low-fat diet caused mice to develop increased fat mass and obesity-associated metabolic phenotypes. This was confirmed when microbiota from lean donors infused to recipients with metabolic syndrome (BMI >30 kg/m2 and fasting plasma glucose >5.6 mmol/L) restored insulin sensitivity and increased butyrate-producing intestinal bacteria, exerting immunomodulatory and anti-inflammatory properties.80 More research is required to determine if this shift in bacterial populations is a consequence or cause of maternal obesity, and to determine its possible positive or negative impact on fetal growth and development.

Linking One-Carbon Metabolism to The Microbiota of Obese Pregnant Women

One-carbon metabolism and the gut microbiota are strongly connected. The reciprocal interaction between B vitamins of one-carbon metabolism and gut bacteria contributes to the overall availability of B vitamins and gut homeostasis. Despite diet being the best-known source of essential vitamins, several bacterial phyla produce B vitamins in quantities that match dietary intake.81,82 One of the most prevalent phyla in the gut, Bacteroidetes, is the predominant producer of vitamin B2, B6, and B12 (Table). Furthermore, most B vitamins required for one-carbon metabolism play a role in supporting bacterial survival and fitness in the gut.83 Animal and human studies report that vitamin B6, folate, and B12 deficiencies contribute to disturbances of bacterial gut homeostasis.84,85 Gut dysbiosis and derangements in one-carbon metabolites occur more often in obese than non-obese pregnant women; however, it is not known if this is the cause or consequence of maternal obesity. Often, consumption of diets poor in micronutrients and rich in energy-dense food groups is associated with lower blood concentrations of folate and vitamin B12.86 This may be exacerbated by the changes in patterns of bacterial populations associated with such dietary regimes.87 Low serum folate and vitamin B12 in pregnant obese women coincide with the decreased presence of B vitamin-producing Bacteroidetes and an increased prevalence of Firmicutes from mid-pregnancy onward.88 Consequently, folate and vitamin B12 may be synthesized to a lesser extent because of the loss of bacterial richness and diversity. Despite this reasoning, given that there are many bacterial strains that synthesize one-carbon metabolic intermediates, it is hard to define the exact roles of each bacteria genus in pregnancy.

Clinical Implications

It is clinically relevant to know that B vitamin availability depends on multiple factors, such as diet, metabolism and gut microbiota, which opens the window for multiple treatment strategies. In this case, if vitamin supplementation is insufficient to restore B vitamin levels in obese women, microbiota homeostasis can be considered as a second target for treating the deficiency. Currently, there is no effective intervention strategy for (obese) pregnant women with derangements in one-carbon metabolism and/or gut dysbiosis. Lifestyle care, including a combination of dietary advice and folic acid/multivitamin supplement use, is currently the most used treatment approach.89,90 However, its effectiveness is either variable or unknown. Alongside lifestyle care tailored to obese pregnant (or preconceptional) women, we would advise to integrate microbiota analyses of stool samples and blood tests for one-carbon–related metabolites/cofactors throughout pregnancy, particularly homocysteine plasma levels given that this is a sensitive marker of derangements in one-carbon metabolism. Currently, several stool sampling methods are used to analyze the gut microbial population, and they could be
integrated in clinical practice during pregnancy visits. The 2 must be independently but simultaneously monitored because a healthy microbiota does not exclude derangements in one-carbon metabolism and vice versa.

Furthermore, the field is now focusing on the use of probiotics and/or prebiotics as an intervention strategy in the treatment of gut dysbiosis. Probiotic bacteria (most common are Lactobacillus and Bifidobacterium species) confer long-lasting health benefits when administered in adequate quantities, such as when treating chronic bowel diseases and infections. Lactobacillus and Bifidobacterium species have folate biosynthetic capacity and are used to restore the Firmicutes-to-Bacteroidetes ratio in gut dysbiosis. In addition, adding probiotics to the diet can favor an increase in bacterial diversity, which counteracts the loss of diversity seen in gut microbiomes of obese patients. Conversely, prebiotics are substrates (mostly nondigestible carbohydrates) that are selectively utilized by gut microorganisms to nourish probiotic bacteria and other gut bacteria. Indeed, the consumption of prebiotic-rich foods has been shown to support probiotic bacteria activity, particularly by increasing gut microbiota concentrations of Lactobacillus and Bifidobacterium species. Currently, there is contradictory evidence on the efficacy of probiotic and prebiotic interventions during pregnancy, particularly because the doses have to be tailored to the composition of the host microbiota, which is individual-specific. However, both have been demonstrated to be safe for use during pregnancy. The use of probiotics and prebiotics during pregnancy in obese women holds potential and should be investigated because there is currently no evidence that they confer substantial benefits for obese pregnant women.

Future Studies

From the foregoing discussion, we can conclude that there are numerous knowledge gaps concerning the relationship between one-carbon metabolism and the gut microbiota in non-obese and obese pregnancies, although it is known that both play a major role in pregnancy health and fetal development, and the subsequent long-term health of offspring. It would be important to know which specific bacteria are associated with low serum folate and vitamin B₁₂ during pregnancy. Future research should focus on intervention strategies, such as blended periconception lifestyle care approaches, to detect and counteract B vitamin deficiencies and gut dysbiosis in obese pregnant women, starting with the use of probiotic supplements. Lastly, given that current knowledge is based on maternal obesity only, further studies need to address other potential mechanisms and the relationship between one-carbon metabolism and gut bacteria in other circumstances prone to vitamin deficiencies, such as in patients with metabolic disorders, those who have a family history of pregnancy complications, or those who harbor genetic polymorphisms in any one of a number of one-carbon metabolism genes.

Conclusion

In this review, we propose that the association between one-carbon metabolism and the gut microbiota contributes to the overall availability of B vitamins and to gut homeostasis of the individual, which subsequently determines maternal and fetal health during pregnancy. Despite limited evidence, it seems that dietary patterns in obese pregnancies are associated with derangements in one-carbon metabolism, aggravated by changes in patterns of bacterial populations associated with poor diets. These are risk factors for adverse pregnancy outcomes, impaired fetal development, and disruption of fetal growth and microbiota formation, leading to potential long-term offspring metabolic and neurologic disorders. Further studies are required to find effective intervention strategies for derangements in one-carbon metabolism and gut dysbiosis tailored to obese pregnant women. Disturbances in metabolism that are detected during early pregnancy or even during the preconceptional period create a window of opportunity for clinicians to provide lifestyle care and to prevent adverse pregnancy outcomes.

ACKNOWLEDGMENTS

We offer our special thanks to Wichor Bramer, PhD, for his assistance with the literature search.

REFERENCES

