Advertisement

Endometriosis promotes atherosclerosis in a murine model

Published:March 26, 2022DOI:https://doi.org/10.1016/j.ajog.2022.03.040

      Background

      Epidemiologic studies have demonstrated an association between endometriosis and the subsequent development of cardiovascular disease. The direct effect of endometriosis on the progression of atherosclerotic, if any, has not been previously characterized. Endometriosis leads to systemic inflammation that could have consequences for cardiovascular health. Here, we reported the effects of endometriosis on the development of atherosclerosis in a murine model.

      Objective

      This study aimed to determine the contribution of endometriosis in promoting cardiovascular disease in a murine model of endometriosis.

      Study Design

      Endometriosis was induced in 18 apolipoprotein E–null mice, the standard murine model used to study atherosclerosis. Mice of the same strain were used as controls (n=18) and underwent sham surgery without inducing endometriosis. The formation of endometriotic lesions was confirmed after 25 weeks of induction. Atherosclerotic lesions were subjected to hematoxylin and eosin staining followed by measurement of the aortic root luminal area and wall thickness. The whole aorta was isolated, and Oil Red O staining was performed to quantify the lipid deposits or plaque formation; moreover, biochemical assays were carried out in serum to determine the levels of lipids and inflammatory-related cytokines.

      Results

      Apolipoprotein E mice with endometriosis exhibited increased aortic atherosclerosis compared with controls as measured using Oil Red O staining (7.9% vs 3.1%, respectively; P=.0004). Mice with endometriosis showed a significant 50% decrease in the aortic luminal area compared with sham mice (0.85 mm2 vs 1.46 mm2; P=.03) and a significant increase in aortic root wall thickness (0.22 mm vs 0.15 mm; P=.04). There was no difference in the lipoprotein profile (P<.05) between mice with endometriosis and sham mice. The serum levels of inflammatory cytokines interleukin 1 alpha, interleukin 6, interferon gamma, and vascular endothelial growth factor were significantly (P<.05)increased in the endometriosis mice.

      Conclusion

      Our study used a murine model to determine the effect of endometriosis on atherosclerosis. Inflammation-related cytokines interleukin 1 alpha, interleukin 6, interferon gamma, and vascular endothelial growth factor (angiogenic factor) released by endometriotic lesions may contribute to the increased cardiovascular risks in women with endometriosis. To reduce the risk of cardiovascular disease, early identification and treatment of endometriosis are essential. Future treatments targeting inflammatory cytokines may help reduce the long-term risk of cardiovascular disease in women with endometriosis.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taylor H.S.
        • Kotlyar A.M.
        • Flores V.A.
        Endometriosis is a chronic systemic disease: clinical challenges and novel innovations.
        Lancet. 2021; 397: 839-852
        • Bulun S.E.
        Endometriosis.
        N Engl J Med. 2009; 360: 268-279
        • Donnez J.
        • Binda M.M.
        • Donnez O.
        • Dolmans M.M.
        Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis.
        Fertil Steril. 2016; 106: 1011-1017
        • Macer M.L.
        • Taylor H.S.
        Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility.
        Obstet Gynecol Clin North Am. 2012; 39: 535-549
        • Weiss G.
        • Goldsmith L.T.
        • Taylor R.N.
        • Bellet D.
        • Taylor H.S.
        Inflammation in reproductive disorders.
        Reprod Sci. 2009; 16: 216-229
        • Burney R.O.
        • Giudice L.C.
        Pathogenesis and pathophysiology of endometriosis.
        Fertil Steril. 2012; 98: 511-519
        • Kennedy S.
        • Bergqvist A.
        • Chapron C.
        • et al.
        ESHRE guideline for the diagnosis and treatment of endometriosis.
        Hum Reprod. 2005; 20: 2698-2704
        • Alderman 3rd, M.H.
        • Yoder N.
        • Taylor H.S.
        The systemic effects of endometriosis.
        Semin Reprod Med. 2017; 35: 263-270
        • de Ziegler D.
        • Borghese B.
        • Chapron C.
        Endometriosis and infertility: pathophysiology and management.
        Lancet. 2010; 376: 730-738
        • Agic A.
        • Xu H.
        • Finas D.
        • Banz C.
        • Diedrich K.
        • Hornung D.
        Is endometriosis associated with systemic subclinical inflammation?.
        Gynecol Obstet Invest. 2006; 62: 139-147
        • Yun B.H.
        • Chon S.J.
        • Choi Y.S.
        • Cho S.
        • Lee B.S.
        • Seo S.K.
        Correction: pathophysiology of endometriosis: role of high mobility group Box-1 and toll-like receptor 4 developing inflammation in endometrium.
        PLoS One. 2018; 13e0203741
        • Kvaskoff M.
        • Mu F.
        • Terry K.L.
        • et al.
        Endometriosis: a high-risk population for major chronic diseases?.
        Hum Reprod Update. 2015; 21: 500-516
        • AlAshqar A.
        • Patzkowsky K.
        • Afrin S.
        • Wild R.
        • Taylor H.S.
        • Borahay M.A.
        Cardiometabolic risk factors and benign gynecologic disorders.
        Obstet Gynecol Surv. 2019; 74: 661-673
        • Hughes C.L.
        • Foster W.G.
        • Agarwal S.K.
        The impact of endometriosis across the lifespan of women: foreseeable research and therapeutic prospects.
        BioMed Res Int. 2015; 2015: 158490
        • Missmer S.A.
        • Tu F.F.
        • Agarwal S.K.
        • et al.
        Impact of endometriosis on life-course potential: a narrative review.
        Int J Gen Med. 2021; 14: 9-25
        • Santoro L.
        • D’Onofrio F.
        • Flore R.
        • Gasbarrini A.
        • Santoliquido A.
        Endometriosis and atherosclerosis: what we already know and what we have yet to discover.
        Am J Obstet Gynecol. 2015; 213: 326-331
        • Li P.C.
        • Yang Y.C.
        • Wang J.H.
        • Lin S.Z.
        • Ding D.C.
        Endometriosis is associated with an increased risk of coronary artery disease in Asian women.
        J Clin Med. 2021; 10: 4173
        • Wei C.H.
        • Chang R.
        • Wan Y.H.
        • Hung Y.M.
        • Wei J.C.
        Endometriosis and new-onset coronary artery disease in Taiwan: a nationwide population-based study.
        Front Med (Lausanne). 2021; 8: 619664
        • Taskin O.
        • Rikhraj K.
        • Tan J.
        • Sedlak T.
        • Rowe T.C.
        • Bedaiwy M.A.
        Link between endometriosis, atherosclerotic cardiovascular disease, and the health of women midlife.
        J Minim Invasive Gynecol. 2019; 26: 781-784
        • Tani A.
        • Yamamoto S.
        • Maegawa M.
        • et al.
        Arterial stiffness is increased in young women with endometriosis.
        J Obstet Gynaecol. 2015; 35: 711-715
        • Goetz T.G.
        • Mamillapalli R.
        • Sahin C.
        • et al.
        Addition of estradiol to cross-sex testosterone therapy reduces atherosclerosis plaque formation in female ApoE-/- mice.
        Endocrinology. 2018; 159: 754-762
        • Glass C.K.
        • Witztum J.L.
        Atherosclerosis. the road ahead.
        Cell. 2001; 104: 503-516
        • Santoro L.
        • D’Onofrio F.
        • Campo S.
        • et al.
        Regression of endothelial dysfunction in patients with endometriosis after surgical treatment: a 2-year follow-up study.
        Hum Reprod. 2014; 29: 1205-1210
        • Santoro L.
        • D’Onofrio F.
        • Campo S.
        • et al.
        Endothelial dysfunction but not increased carotid intima-media thickness in young European women with endometriosis.
        Hum Reprod. 2012; 27: 1320-1326
        • Cirillo M.
        • Coccia M.E.
        • Petraglia F.
        • Fatini C.
        Role of endometriosis in defining cardiovascular risk: a gender medicine approach for women’s health.
        Hum Fertil (Camb). 2021; : 1-9
        • Scutiero G.
        • Iannone P.
        • Bernardi G.
        • et al.
        Oxidative stress and endometriosis: a systematic review of the literature.
        Oxid Med Cell Longev. 2017; 2017: 7265238
        • Melo A.S.
        • Rosa-e-Silva J.C.
        • Rosa-e-Silva A.C.
        • Poli-Neto O.B.
        • Ferriani R.A.
        • Vieira C.S.
        Unfavorable lipid profile in women with endometriosis.
        Fertil Steril. 2010; 93: 2433-2436
        • Libby P.
        • Ridker P.M.
        • Maseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105: 1135-1143
        • Berk B.C.
        • Weintraub W.S.
        • Alexander R.W.
        Elevation of C-reactive protein in “active” coronary artery disease.
        Am J Cardiol. 1990; 65: 168-172
        • Ridker P.M.
        • Hennekens C.H.
        • Buring J.E.
        • Rifai N.
        C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.
        N Engl J Med. 2000; 342: 836-843
        • Ridker P.M.
        • Rifai N.
        • Pfeffer M.
        • Sacks F.
        • Lepage S.
        • Braunwald E.
        Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction.
        Circulation. 2000; 101: 2149-2153
        • Hogg C.
        • Horne A.W.
        • Greaves E.
        Endometriosis-associated macrophages: origin, phenotype, and function.
        Front Endocrinol (Lausanne). 2020; 11: 7
        • Breslow J.L.
        Mouse models of atherosclerosis.
        Science. 1996; 272: 685-688
        • Curtiss L.K.
        • Boisvert W.A.
        Apolipoprotein E and atherosclerosis.
        Curr Opin Lipidol. 2000; 11: 243-251
        • Nakashima Y.
        • Plump A.S.
        • Raines E.W.
        • Breslow J.L.
        • Ross R.
        ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree.
        Arterioscler Thromb. 1994; 14: 133-140
        • Osada J.
        • Joven J.
        • Maeda N.
        The value of apolipoprotein E knockout mice for studying the effects of dietary fat and cholesterol on atherogenesis.
        Curr Opin Lipidol. 2000; 11: 25-29
        • van Dijk K.W.
        • Hofker M.H.
        • Havekes L.M.
        Dissection of the complex role of apolipoprotein E in lipoprotein metabolism and atherosclerosis using mouse models.
        Curr Atheroscler Rep. 1999; 1: 101-107
        • Kilkenny C.
        • Browne W.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        NC3Rs Reporting Guidelines Working Group. Animal research: reporting in vivo experiments: the ARRIVE guidelines.
        Br J Pharmacol. 2010; 160: 1577-1579
        • Guevara N.V.
        • Kim H.S.
        • Antonova E.I.
        • Chan L.
        The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo.
        Nat Med. 1999; 5: 335-339
        • Andrés-Manzano M.J.
        • Andrés V.
        • Dorado B.
        Oil Red O and hematoxylin and eosin staining for quantification of atherosclerosis burden in mouse aorta and aortic root.
        Methods Mol Biol. 2015; 1339: 85-99
        • Plump A.S.
        • Breslow J.L.
        Apolipoprotein E and the apolipoprotein E-deficient mouse.
        Annu Rev Nutr. 1995; 15: 495-518
        • Coleman R.
        • Hayek T.
        • Keidar S.
        • Aviram M.
        A mouse model for human atherosclerosis: long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice.
        Acta Histochem. 2006; 108: 415-424
        • Mamillapalli R.
        • Dang T.
        • Habata S.
        • Gao X.B.
        • Taylor H.S.
        Activation of hypocretin neurons in endometriosis.
        Reprod Sci. 2022; 29: 243-249
        • Pluchino N.
        • Mamillapalli R.
        • Shaikh S.
        • et al.
        CXCR4 or CXCR7 antagonists treat endometriosis by reducing bone marrow cell trafficking.
        J Cell Mol Med. 2020; 24: 2464-2474
        • Kotlyar A.M.
        • Mamillapalli R.
        • Flores V.A.
        • Taylor H.S.
        Tofacitinib alters STAT3 signaling and leads to endometriosis lesion regression.
        Mol Hum Reprod. 2021; 27: gaab016
        • Golforoush P.
        • Yellon D.M.
        • Davidson S.M.
        Mouse models of atherosclerosis and their suitability for the study of myocardial infarction.
        Basic Res Cardiol. 2020; 115: 73
        • Gargiulo S.
        • Gramanzini M.
        • Mancini M.
        Molecular imaging of vulnerable atherosclerotic plaques in animal models.
        Int J Mol Sci. 2016; 17: 1511
        • Canton G.
        • Hippe D.S.
        • Chen L.
        • et al.
        Atherosclerotic burden and remodeling patterns of the popliteal artery as detected in the magnetic resonance imaging osteoarthritis initiative data set.
        J Am Heart Assoc. 2021; 10e018408
        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • Steinberg D.
        • Glass C.K.
        • Witztum J.L.
        Evidence mandating earlier and more aggressive treatment of hypercholesterolemia.
        Circulation. 2008; 118: 672-677
        • Lim S.S.
        • Vos T.
        • Flaxman A.D.
        • et al.
        A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.
        Lancet. 2012; 380: 2224-2260
        • Miller Y.I.
        • Choi S.H.
        • Wiesner P.
        • et al.
        Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity.
        Circ Res. 2011; 108: 235-248
        • Navab M.
        • Ananthramaiah G.M.
        • Reddy S.T.
        • et al.
        The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL.
        J Lipid Res. 2004; 45: 993-1007
        • Hinder L.M.
        • Vincent A.M.
        • Hayes J.M.
        • McLean L.L.
        • Feldman E.L.
        Apolipoprotein E knockout as the basis for mouse models of dyslipidemia-induced neuropathy.
        Exp Neurol. 2013; 239: 102-110
        • Ishida T.
        • Choi S.Y.
        • Kundu R.K.
        • et al.
        Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice.
        J Biol Chem. 2004; 279: 45085-45092
        • Galkina E.
        • Ley K.
        Immune and inflammatory mechanisms of atherosclerosis (∗).
        Annu Rev Immunol. 2009; 27: 165-197
        • Barthwal M.K.
        • Anzinger J.J.
        • Xu Q.
        • Bohnacker T.
        • Wymann M.P.
        • Kruth H.S.
        Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation.
        PLoS One. 2013; 8: e58054
        • Nematian S.E.
        • Mamillapalli R.
        • Kadakia T.S.
        • Majidi Zolbin M.
        • Moustafa S.
        • Taylor H.S.
        Systemic inflammation induced by microRNAs: endometriosis-derived alterations in circulating microRNA 125b-5p and Let-7b-5p regulate macrophage cytokine production.
        J Clin Endocrinol Metab. 2018; 103: 64-74
        • Kamari Y.
        • Werman-Venkert R.
        • Shaish A.
        • et al.
        Differential role and tissue specificity of interleukin-1alpha gene expression in atherogenesis and lipid metabolism.
        Atherosclerosis. 2007; 195: 31-38
        • Reiss A.B.
        • Siegart N.M.
        • De Leon J.
        Interleukin-6 in atherosclerosis: atherogenic or atheroprotective?.
        Clin Lipidol. 2017; 12: 14-23
        • Voloshyna I.
        • Littlefield M.J.
        • Reiss A.B.
        Atherosclerosis and interferon-γ: new insights and therapeutic targets.
        Trends Cardiovasc Med. 2014; 24: 45-51
        • Holm P.W.
        • Slart R.H.
        • Zeebregts C.J.
        • Hillebrands J.L.
        • Tio R.A.
        Atherosclerotic plaque development and instability: a dual role for VEGF.
        Ann Med. 2009; 41: 257-264
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011; 473: 317-325
        • McLaren J.E.
        • Michael D.R.
        • Ashlin T.G.
        • Ramji D.P.
        Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy.
        Prog Lipid Res. 2011; 50: 331-347
        • Liu Y.
        • Qin X.
        • Lu X.
        Crocin improves endometriosis by inhibiting cell proliferation and the release of inflammatory factors.
        Biomed Pharmacother. 2018; 106: 1678-1685
        • Malutan A.M.
        • Drugan T.
        • Costin N.
        • et al.
        Pro-inflammatory cytokines for evaluation of inflammatory status in endometriosis.
        Cent Eur J Immunol. 2015; 40: 96-102
        • Rocha A.L.
        • Reis F.M.
        • Taylor R.N.
        Angiogenesis and endometriosis.
        Obstet Gynecol Int. 2013; 2013: 859619