Expert Reviews| Volume 225, ISSUE 2, P120-127, August 2021

New developments in fetal and neonatal alloimmune thrombocytopenia

Published:April 08, 2021DOI:
      Fetal and neonatal alloimmune thrombocytopenia, the platelet equivalent of hemolytic disease of the fetus and newborn, can have devastating effects on both the fetus and neonate. Current management of fetal and neonatal alloimmune thrombocytopenia in a subsequent affected pregnancy involves antenatal administration of intravenous immune globulin and prednisone to the pregnant woman to prevent the development of severe fetal thrombocytopenia and secondary intracranial hemorrhage in utero. That therapy has proven to be highly effective but is associated with maternal side effects and is expensive. This commentary describes 4 advances that could substantially change the current approach to detecting and managing fetal and neonatal alloimmune thrombocytopenia in the near future. The first would be an introduction of a program to screen all antepartum patients in this country for pregnancies at risk of developing fetal and neonatal alloimmune thrombocytopenia. Strategies to implement this complex process have been described. A second advance is testing of cell-free fetal DNA obtained from maternal blood to noninvasively determine the fetal human platelet antigen 1 genotype. A third, in preliminary development, is creation of a prophylactic product that would be the platelet equivalent of Rh immune globulin (RhoGAM). Finally, a fourth major potential advance is the development of neonatal Fc receptor inhibitors to replace the current medical therapy administered to pregnant women with an affected fetus. Neonatal Fc receptor recycles plasma immunoglobulin G to increase its half-life and is the means by which immunoglobulin G crosses the placenta from the maternal to the fetal circulation. Blocking the neonatal Fc receptor is an ideal way to prevent maternal immunoglobulin G antibody from causing fetal and neonatal alloimmune thrombocytopenia in a fetus at risk of developing that disorder. The pertinent pathophysiology and rationale for each of these developments will be presented in addition to our thoughts relating to steps that must be taken and difficulties that each approach would face for them to be successfully implemented.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Pacheco L.D.
        • Berkowitz R.L.
        • Moise Jr., K.J.
        • Bussel J.B.
        • McFarland J.G.
        • Saade G.R.
        Fetal and neonatal alloimmune thrombocytopenia: a management algorithm based on risk stratification.
        Obstet Gynecol. 2011; 118: 1157-1163
        • Mueller-Eckhardt C.
        • Kiefel V.
        • Grubert A.
        • et al.
        348 Cases of suspected neonatal alloimmune thrombocytopenia.
        Lancet. 1989; 1: 363-366
        • Lieberman L.
        • Greinacher A.
        • Murphy M.F.
        • et al.
        Fetal and neonatal alloimmune thrombocytopenia: recommendations for evidence-based practice, an international approach.
        Br J Haematol. 2019; 185: 549-562
        • Peterson J.A.
        • Gitter M.
        • Bougie D.W.
        • et al.
        Low-frequency human platelet antigens as triggers for neonatal alloimmune thrombocytopenia.
        Transfusion. 2014; 54: 1286-1293
        • Ohto H.
        [Neonatal alloimmune thrombocytopenia].
        Nihon Rinsho. 1997; 55: 2310-2314
        • Xue M.
        • Liu Y.C.
        • Wei P.
        [Genetic polymorphism of human platelet antigens 1-18 in Chinese Nanjing Han population].
        Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2012; 20: 1235-1239
        • Bussel J.B.
        • Zacharoulis S.
        • Kramer K.
        • McFarland J.G.
        • Pauliny J.
        • Kaplan C.
        Clinical and diagnostic comparison of neonatal alloimmune thrombocytopenia to non-immune cases of thrombocytopenia.
        Pediatr Blood Cancer. 2005; 45: 176-183
        • Lakkaraja M.
        • Berkowitz R.L.
        • Vinograd C.A.
        • et al.
        Omission of fetal sampling in treatment of subsequent pregnancies in fetal-neonatal alloimmune thrombocytopenia.
        Am J Obstet Gynecol. 2016; 215: 471.e1-471.e9
        • Kiefel V.
        • Bassler D.
        • Kroll H.
        • et al.
        Antigen-positive platelet transfusion in neonatal alloimmune thrombocytopenia (NAIT).
        Blood. 2006; 107: 3761-3763
        • Bussel J.B.
        • Berkowitz R.L.
        • McFarland J.G.
        • Lynch L.
        • Chitkara U.
        Antenatal treatment of neonatal alloimmune thrombocytopenia.
        N Engl J Med. 1988; 319: 1374-1378
        • Bussel J.B.
        • Berkowitz R.L.
        • Lynch L.
        • et al.
        Antenatal management of alloimmune thrombocytopenia with intravenous gamma-globulin: a randomized trial of the addition of low-dose steroid to intravenous gamma-globulin.
        Am J Obstet Gynecol. 1996; 174: 1414-1423
        • Bussel J.B.
        • Berkowitz R.L.
        • Hung C.
        • et al.
        Intracranial hemorrhage in alloimmune thrombocytopenia: stratified management to prevent recurrence in the subsequent affected fetus.
        Am J Obstet Gynecol. 2010; 203: 135.e1-135.e14
        • Berkowitz R.L.
        • Kolb E.A.
        • McFarland J.G.
        • et al.
        Parallel randomized trials of risk-based therapy for fetal alloimmune thrombocytopenia.
        Obstet Gynecol. 2006; 107: 91-96
        • Arnold D.M.
        • Smith J.W.
        • Kelton J.G.
        Diagnosis and management of neonatal alloimmune thrombocytopenia.
        Transfus Med Rev. 2008; 22: 255-267
        • McBain R.D.
        • Crowther C.A.
        • Middleton P.
        Anti-D administration in pregnancy for preventing Rhesus alloimmunisation.
        Cochrane Database Syst Rev. 2015; : CD000020
        • Jin J.C.
        • Lakkaraja M.M.
        • Ferd P.
        • et al.
        Maternal sensitization occurs before delivery in severe cases of fetal alloimmune thrombocytopenia.
        Am J Hematol. 2019; 94: E213-E215
        • Moise Jr., K.J.
        • Argoti P.S.
        Management and prevention of red cell alloimmunization in pregnancy: a systematic review.
        Obstet Gynecol. 2012; 120: 1132-1139
        • Liu Z.J.
        • Bussel J.B.
        • Lakkaraja M.
        • et al.
        Suppression of in vitro megakaryopoiesis by maternal sera containing anti-HPA-1a antibodies.
        Blood. 2015; 126: 1234-1236
        • Kjaer M.
        • Bertrand G.
        • Bakchoul T.
        • et al.
        Maternal HPA-1a antibody level and its role in predicting the severity of Fetal/Neonatal alloimmune thrombocytopenia: a systematic review.
        Vox Sang. 2019; 114: 79-94
        • Ward M.J.
        • Pauliny J.
        • Lipper E.G.
        • Bussel J.B.
        Long-term effects of fetal and neonatal alloimmune thrombocytopenia and its antenatal treatment on the medical and developmental outcomes of affected children.
        Am J Perinatol. 2006; 23: 487-492
        • Williamson L.M.
        • Hackett G.
        • Rennie J.
        • et al.
        The natural history of fetomaternal alloimmunization to the platelet-specific antigen HPA-1a (PlA1, Zwa) as determined by antenatal screening.
        Blood. 1998; 92: 2280-2287
        • Turner M.L.
        • Bessos H.
        • Fagge T.
        • et al.
        Prospective epidemiologic study of the outcome and cost-effectiveness of antenatal screening to detect neonatal alloimmune thrombocytopenia due to anti-HPA-1a.
        Transfusion. 2005; 45: 1945-1956
        • Killie M.K.
        • Kjeldsen-Kragh J.
        • Husebekk A.
        • Skogen B.
        • Olsen J.A.
        • Kristiansen I.S.
        Cost-effectiveness of antenatal screening for neonatal alloimmune thrombocytopenia.
        BJOG. 2007; 114: 588-595
        • Kjær M.
        • Geisen C.
        • Akkök Ç.A.
        • et al.
        Strategies to develop a prophylaxis for the prevention of HPA-1a immunization and fetal and neonatal alloimmune thrombocytopenia.
        Transfus Apher Sci. 2020; 59: 102712
        • Kjeldsen-Kragh J.
        • Fergusson D.A.
        • Kjaer M.
        • et al.
        Fetal/neonatal alloimmune thrombocytopenia: a systematic review of impact of HLA-DRB3∗01:01 on fetal/neonatal outcome.
        Blood Adv. 2020; 4: 3368-3377
        • Winkelhorst D.
        • Porcelijn L.
        • Muizelaar E.
        • Oldert G.
        • Huiskes E.
        • van der Schoot C.E.
        Fast and low-cost direct ELISA for high-throughput serological HPA-1a typing.
        Transfusion. 2019; 59: 2989-2996
        • Fontão-Wendel R.
        • Wendel S.
        • Odone V.
        • Carneiro J.D.
        • Silva L.
        • Isfer E.
        A case report of neonatal alloimmune thrombocytopenic purpura: the importance of correct diagnosis for future pregnancies.
        Sao Paulo Med J. 2005; 123: 198-200
        • Kjeldsen-Kragh J.
        New elegant methods for maternal and fetal HPA-1a typing.
        Transfusion. 2018; 58: 2253-2254
        • McFarland J.G.
        • Aster R.H.
        • Bussel J.B.
        • Gianopoulos J.G.
        • Derbes R.S.
        • Newman P.J.
        Prenatal diagnosis of neonatal alloimmune thrombocytopenia using allele-specific oligonucleotide probes.
        Blood. 1991; 78: 2276-2282
        • van der Schoot C.E.
        • Thurik F.
        • Scheffer P.G.
        • et al.
        Prenatal fetal DNA testing for predicting HDFN, FNAIT, and RhIG candidacy.
        Blood. 2013; 122
        • Brinc D.
        • Le-Tien H.
        • Crow A.R.
        • Siragam V.
        • Freedman J.
        • Lazarus A.H.
        Immunoglobulin G-mediated regulation of the murine immune response to transfused red blood cells occurs in the absence of active immune suppression: implications for the mechanism of action of anti-D in the prevention of haemolytic disease of the fetus and newborn?.
        Immunology. 2008; 124: 141-146
        • Kumpel B.M.
        Monoclonal anti-D development programme.
        Transpl Immunol. 2002; 10: 199-204
        • Flegel W.A.
        The genetics of the Rhesus blood group system.
        Blood Transfus. 2007; 5: 50-57
        • Weng Y.J.
        • Husebekk A.
        • Skogen B.
        • Kjaer M.
        • Lin L.T.
        • Burnouf T.
        Anti-human platelet Antigen-1a immunoglobulin G preparation intended to prevent fetal and neonatal alloimmune thrombocytopenia.
        PLoS One. 2016; 11e0162973
        • Tiller H.
        • Killie M.K.
        • Chen P.
        • et al.
        Toward a prophylaxis against fetal and neonatal alloimmune thrombocytopenia: induction of antibody-mediated immune suppression and prevention of severe clinical complications in a murine model.
        Transfusion. 2012; 52: 1446-1457
        • Pyzik M.
        • Sand K.M.K.
        • Hubbard J.J.
        • Andersen J.T.
        • Sandlie I.
        • Blumberg R.S.
        The neonatal Fc receptor (FcRn): a misnomer?.
        Front Immunol. 2019; 10: 1540
        • Patel D.D.
        • Bussel J.B.
        Neonatal Fc receptor in human immunity: function and role in therapeutic intervention.
        J Allergy Clin Immunol. 2020; 146: 467-478
        • Damas O.M.
        • Deshpande A.R.
        • Avalos D.J.
        • Abreu M.T.
        Treating inflammatory bowel disease in pregnancy: the issues we face today.
        J Crohns Colitis. 2015; 9: 928-936
        • Newland A.C.
        • Sánchez-González B.
        • Rejtő L.
        • et al.
        Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia.
        Am J Hematol. 2020; 95: 178-187
        • Robak T.
        • Kaźmierczak M.
        • Jarque I.
        • et al.
        Phase 2 multiple-dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia.
        Blood Adv. 2020; 4: 4136-4146
        • Izumi K.
        • Bieber K.
        • Ludwig R.J.
        Current clinical trials in pemphigus and pemphigoid.
        Front Immunol. 2019; 10: 978
        • Menon D.
        • Barnett C.
        • Bril V.
        Novel treatments in myasthenia gravis.
        Front Neurol. 2020; 11: 538
        • Urbaniak S.J.
        • Duncan J.I.
        • Armstrong-Fisher S.S.
        • Abramovich D.R.
        • Page K.R.
        Transfer of anti-D antibodies across the isolated perfused human placental lobule and inhibition by high-dose intravenous immunoglobulin: a possible mechanism of action.
        Br J Haematol. 1997; 96: 186-193
        • El-Bohy M.
        • Poowuttikul P.
        • Secord E.
        Humoral immune deficiencies of childhood.
        Pediatr Clin North Am. 2019; 66: 897-903