Advertisement

Maternal surgery during pregnancy has a transient adverse effect on the developing fetal rabbit brain

      Background

      Recently, the US Food and Drug Administration called for cautious use of anesthetic drugs during pregnancy. In 0.2−2% of pregnancies, nonobstetric surgery is being performed. The consequences of anesthesia during pregnancy on fetal development remain unclear, and preclinical studies in relevant animal models may help to elucidate them.

      Objective

      To assess the effect of maternal anesthesia and surgery during pregnancy on the developing fetal brain, using a rabbit model.

      Materials and Methods

      This is a randomized, sham-controlled study in time-mated pregnant does at 28 days of gestation (term = 31 days), which corresponds to the end of the second trimester in humans. Anesthesia was induced in 14 does (155 pups) with propofol and maintained with 4 vol% (equivalent to 1 minimum alveolar concentration) sevoflurane for 2 hours, and a laparotomy with minimal organ manipulation was performed (surgery group). Maternal vital signs (blood pressure, heart rate, peripheral and cerebral oxygen saturation, temperature, end-tidal CO2, pH, lactate) were continuously monitored. Sham controls consisted of 7 does (74 pups) undergoing invasive hemodynamic monitoring for 2 hours without sedation. At term, does underwent cesarean delivery under ketamine−medetomidine sedation and local anesthesia. Pups either underwent motor and sensory neurologic testing followed by euthanasia at day 1 or daily neurodevelopment testing for 2 weeks and extensive neurologic assessment at 5 and 7 weeks (open field and object recognition test, T-maze, and radial-arm maze). Brains were harvested for histologic assessment of neuron density and synaptophysin expression.

      Results

      Blood gases and vital parameters were stable in both groups. On postnatal day 1, surgery pups had significant lower motor (25 ± 1 vs 23 ± 3; P = .004) and sensory (16 ± 2 vs 15 ± 2; P = .005) neurobehavioral scores and lower brain-to-body weight ratios (3.7% ± 0.6% vs 3.4% ± 0.6%; P = .001). This was accompanied by lower neuron density in multiple brain regions (eg, hippocampus 2617 ± 410 vs 2053 ± 492 neurons/mm2; P = .004) with lower proliferation rates and less synaptophysin expression. Furthermore, surgery pups had delayed motor development during the first week of life, for example with hopping appearing later (6 ± 5 vs 12 ± 3 days; P = .011). Yet, by 7 weeks of age, neurobehavioral impairment was limited to a reduced digging behavior, and no differences in neuron density or synaptophysin expression were seen.

      Conclusion

      In rabbits, 2 hours of maternal general anesthesia and laparotomy, with minimal organ and no fetal manipulation, had a measurable impact on neonatal neurologic function and brain morphology. Pups had a slower motoric neurodevelopment, but by 7 weeks the effect became almost undetectable.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brodsky J.B.
        • Cohen E.N.
        • Brown Jr., B.W.
        • Wu M.L.
        • Whitcher C.
        Surgery during pregnancy and fetal outcome.
        Am J Obstet Gynecol. 1980; 138: 1165-1167
        • Mazze R.I.
        • Kallen B.
        Reproductive outcome after anesthesia and operation during pregnancy: a registry study of 5405 cases.
        Am J Obstet Gynecol. 1989; 161: 1178-1185
        • Kort B.
        • Katz V.L.
        • Watson W.J.
        The effect of nonobstetric operation during pregnancy.
        Surgery Gynecol Obstet. 1993; 177: 371-376
        • Jenkins T.M.
        • Mackey S.F.
        • Benzoni E.M.
        • Tolosa J.E.
        • Sciscione A.C.
        Non-obstetric surgery during gestation: risk factors for lower birthweight.
        Aust N Z J Obstet Gynaecol. 2003; 43: 27-31
        • Shnider S.M.
        • Webster G.M.
        Maternal and fetal hazards of surgery during pregnancy.
        Am J Obstet Gynecol. 1965; 92: 891-900
        • Devroe S.
        • Bleeser T.
        • Van de Velde M.
        • et al.
        Anesthesia for non-obstetric surgery during pregnancy in a tertiary referral center: a 16-year retrospective, matched case-control, cohort study.
        Int J Obstet Anesth. 2019; 39: 74-81
        • Davidson A.J.
        • Sun L.S.
        Clinical evidence for any effect of anesthesia on the developing brain.
        Anesthesiology. 2018; 128: 840-853
        • Rizzi S.
        • Ori C.
        • Jevtovic-Todorovic V.
        Timing versus duration: determinants of anesthesia-induced developmental apoptosis in the young mammalian brain.
        Ann N Y Acad Sci. 2010; 1199: 43-51
        • Cohen-Kerem R.
        • Railton C.
        • Oren D.
        • Lishner M.
        • Koren G.
        Pregnancy outcome following non-obstetric surgical intervention.
        Am J Surg. 2005; 190: 467-473
        • Inversetti A.
        • Van der Veeken L.
        • Thompson D.
        • et al.
        Neurodevelopmental outcome of children with spina bifida aperta repaired prenatally vs postnatally: systematic review and meta-analysis.
        Ultrasound Obstet Gynecol. 2019; 53: 293-301
        • Palanisamy A.
        Maternal anesthesia and fetal neurodevelopment.
        Int J Obstet Anesth. 2012; 21: 152-162
        • De Tina A.
        • Palanisamy A.
        General anesthesia during the third trimester: any link to neurocognitive outcomes?.
        Anesthesiol Clin. 2017; 35: 69-80
        • Rizzi S.
        • Carter L.B.
        • Ori C.
        • Jevtovic-Todorovic V.
        Clinical anesthesia causes permanent damage to the fetal guinea pig brain.
        Brain Pathol. 2008; 18: 198-210
        • Palanisamy A.
        • Baxter M.G.
        • Keel P.K.
        • Xie Z.
        • Crosby G.
        • Culley D.J.
        Rats exposed to isoflurane in utero during early gestation are behaviorally abnormal as adults.
        Anesthesiology. 2011; 114: 521-528
        • Olutoye O.A.
        • Sheikh F.
        • Zamora I.J.
        • et al.
        Repeated isoflurane exposure and neuroapoptosis in the midgestation fetal sheep brain.
        Am J Obstet Gynecol. 2016; 214: 542
        • Kannan S.
        • Saadani-Makki F.
        • Muzik O.
        • et al.
        Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET.
        J Nucl Med. 2007; 48: 946-954
        • Saadani-Makki F.
        • Kannan S.
        • Lu X.
        • et al.
        Intrauterine administration of endotoxin leads to motor deficits in a rabbit model: a link between prenatal infection and cerebral palsy.
        Am J Obstet Gynecol. 2008; 199: 651
        • Hampshire V.
        • Robertson S.
        Using the Facial Grimace Scale to evaluate rabbit wellness in post-procedural monitoring.
        Lab Anim. 2015; 44: 259-260
        • van der merwe JVdV, L.
        • et al.
        Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model.
        Sci Rep. 2019; 9: 3506
        • Fredriksson A.
        • Ponten E.
        • Gordh T.
        • Eriksson P.
        Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits.
        Anesthesiology. 2007; 107: 427-436
        • Ikonomidou C.
        • Bosch F.
        • Miksa M.
        • et al.
        Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain.
        Science. 1999; 283: 70-74
        • Scallet A.C.
        • Schmued L.C.
        • Slikker Jr., W.
        • et al.
        Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons.
        Toxicol Sci. 2004; 81: 364-370
        • Slikker Jr., W.
        • Zou X.
        • Hotchkiss C.E.
        • et al.
        Ketamine-induced neuronal cell death in the perinatal rhesus monkey.
        Toxicol Sci. 2007; 98: 145-158
        • Wang C.
        • Sadovova N.
        • Hotchkiss C.
        • et al.
        Blockade of N-methyl-D-aspartate receptors by ketamine produces loss of postnatal day 3 monkey frontal cortical neurons in culture.
        Toxicol Sci. 2006; 91: 192-201
        • Brambrink A.M.
        • Evers A.S.
        • Avidan M.S.
        • et al.
        Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain.
        Anesthesiology. 2010; 112: 834-841
        • Brambrink A.M.
        • Back S.A.
        • Riddle A.
        • et al.
        Isoflurane-induced apoptosis of oligodendrocytes in the neonatal primate brain.
        Ann Neurol. 2012; 72: 525-535
        • Schenning K.J.
        • Noguchi K.K.
        • Martin L.D.
        • et al.
        Isoflurane exposure leads to apoptosis of neurons and oligodendrocytes in 20- and 40-day old rhesus macaques.
        Neurotoxicol Teratol. 2017; 60: 63-68
        • Vutskits L.
        • Gascon E.
        • Tassonyi E.
        • Kiss J.Z.
        Effect of ketamine on dendritic arbor development and survival of immature GABAergic neurons in vitro.
        Toxicol Sci. 2006; 91: 540-549
        • Xiao H.
        • Liu B.
        • Chen Y.
        • Zhang J.
        Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane.
        Int J Dev Neurosci. 2016; 48: 38-49
        • Raper J.
        • Alvarado M.C.
        • Murphy K.L.
        • Baxter M.G.
        Multiple anesthetic exposure in infant monkeys alters emotional reactivity to an acute stressor.
        Anesthesiology. 2015; 123: 1084-1092
        • Paule M.G.
        • Li M.
        • Allen R.R.
        • et al.
        Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys.
        Neurotoxicol Teratol. 2011; 33: 220-230
        • Dobbing J.
        • Sands J.
        Comparative aspects of the brain growth spurt.
        Early Hum Dev. 1979; 3: 79-83
        • Green H.F.
        • Nolan Y.M.
        Inflammation and the developing brain: consequences for hippocampal neurogenesis and behavior.
        Neurosci Biobehav Rev. 2014; 40: 20-34
        • Cordeiro C.N.
        • Tsimis M.
        • Burd I.
        Infections and brain development.
        Obstet Gynecol Surv. 2015; 70: 644-655
        • Zhao T.
        • Li Y.
        • Wei W.
        • Savage S.
        • Zhou L.
        • Ma D.
        Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring.
        Neurobiol Dis. 2014; 68: 145-155
        • Song R.
        • Ling X.
        • Peng M.
        • Xue Z.
        • Cang J.
        • Fang F.
        Maternal sevoflurane exposure causes abnormal development of fetal prefrontal cortex and induces cognitive dysfunction in offspring.
        Stem Cells Int. 2017; 2017: 6158468
        • Redila V.A.
        • Olson A.K.
        • Swann S.E.
        • et al.
        Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise.
        Hippocampus. 2006; 16: 305-311
        • Fang F.
        • Song R.
        • Ling X.
        • Peng M.
        • Xue Z.
        • Cang J.
        Multiple sevoflurane anesthesia in pregnant mice inhibits neurogenesis of fetal hippocampus via repressing transcription factor Pax6.
        Life Sci. 2017; 175: 16-22
        • Klintsova A.Y.
        • Helfer J.L.
        • Calizo L.H.
        • Dong W.K.
        • Goodlett C.R.
        • Greenough W.T.
        Persistent impairment of hippocampal neurogenesis in young adult rats following early postnatal alcohol exposure.
        Alcohol Clin Exp Res. 2007; 31: 2073-2082
        • Kandel E.R.
        • Schwartz J.H.
        • Jessel T.M.
        Principi di neuroscienze.
        Casa Editrice Ambrosiana, Milano2003
        • Panieri E.
        • Gogvadze V.
        • Norberg E.
        • Venkatesh R.
        • Orrenius S.
        • Zhivotovsky B.
        Reactive oxygen species generated in different compartments induce cell death, survival, or senescence.
        Free Radic Biol Med. 2013; 57: 176-187
        • Zhivotovsky B.
        • Orrenius S.
        Calcium and cell death mechanisms: a perspective from the cell death community.
        Cell Calcium. 2011; 50: 211-221
        • Meyer U.
        • Nyffeler M.
        • Engler A.
        • et al.
        The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.
        J Neurosci. 2006; 26: 4752-4762
        • Cacci E.
        • Claasen J.H.
        • Kokaia Z.
        Microglia-derived tumor necrosis factor-α exaggerates death of newborn hippocampal progenitor cells in vitro.
        J Neurosci Res. 2005; 80: 789-797
        • Tracey K.J.
        • Cerami A.
        Tumor necrosis factor, other cytokines and disease.
        Annu Rev Cell Biol. 1993; 9: 317-343
        • Marx C.E.
        • Jarskog L.F.
        • Lauder J.M.
        • Lieberman J.A.
        • Gilmore J.H.
        Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia.
        Biol Psychiatry. 2001; 50: 743-749
        • Kovacic P.
        • Somanathan R.
        Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity.
        Oxid Med Cell Longev. 2010; 3: 13-22
        • Quiroz-Padilla M.F.
        • Guillazo-Blanch G.
        • Sanchez M.Y.
        • Dominguez-Sanchez M.A.
        • Gomez R.M.
        Effects of excitotoxic lesion with inhaled anesthetics on nervous system cells of rodents.
        Curr Pharm Des. 2018; 24: 4-14
        • Eilers H.
        • Yost S.
        • Section V.
        Drugs that act in the central nervous system. Basic and clinical pharmacology.
        12th ed. McGraw-Hill, New York2012: 429-447
        • Rang H.P.
        • Dale M.M.
        • Ritter J.M.
        • Flower R.J.
        • Henderson G.
        Section 4–the nervous system. Rang and Dale's pharmacology.
        7th ed. Livingstone, Edinburgh2012: 492-502
        • Ben-Ari Y.
        Excitatory actions of gaba during development: the nature of the nurture.
        Nat Rev Neurosci. 2002; 3: 728-739
        • Le Magueresse C.
        • Monyer H.
        GABAergic interneurons shape the functional maturation of the cortex.
        Neuron. 2013; 77: 388-405
        • Wang D.D.
        • Kriegstein A.R.
        Defining the role of GABA in cortical development.
        J Physiol. 2009; 587: 1873-1879
        • Donzis E.J.
        • Tronson N.C.
        Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences.
        Neurobiol Learn Mem. 2014; 115: 68-77
        • Saxena S.
        • Maze M.
        Impact on the brain of the inflammatory response to surgery.
        Presse medicale (Paris, France: 1983). 2018; 47: e73-e81
        • Popic J.
        • Pesic V.
        • Milanovic D.
        • et al.
        Induction of TNF-alpha signaling cascade in neonatal rat brain during propofol anesthesia.
        Int J Dev Neurosci. 2015; 44: 22-32
        • Lee S.
        • Chung W.
        • Park H.
        • et al.
        Single and multiple sevoflurane exposures during pregnancy and offspring behavior in mice.
        Paediatr Anaesth. 2017; 27: 742-751
        • Shih J.
        • May L.D.
        • Gonzalez H.E.
        • et al.
        Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats.
        Anesthesiology. 2012; 116: 586-602
        • Zheng H.
        • Dong Y.
        • Xu Z.
        • et al.
        Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice.
        Anesthesiology. 2013; 118: 516-526
        • Huang L.
        • Hayes S.
        • Yang G.
        Long-lasting behavioral effects in neonatal mice with multiple exposures to ketamine-xylazine anesthesia.
        Neurotoxicol Teratol. 2017; 60: 75-81
        • Sur M.
        • Rubenstein J.L.
        Patterning and plasticity of the cerebral cortex.
        Science. 2005; 310: 805-810
        • Sharma N.
        • Classen J.
        • Cohen L.G.
        Neural plasticity and its contribution to functional recovery.
        Handb Clin Neurol. 2013; 110: 3-12
        • Kolb B.
        • Harker A.
        • Gibb R.
        Principles of plasticity in the developing brain.
        Dev Med Child Neurol. 2017; 59: 1218-1223
        • Bonfanti L.
        • Ponti G.
        Adult mammalian neurogenesis and the New Zealand white rabbit.
        Vet J. 2008; 175: 310-331
        • Illa M.
        • Brito V.
        • Pla L.
        • et al.
        Early environmental enrichment enhances abnormal brain connectivity in a rabbit model of intrauterine growth restriction.
        Fetal Diagn Ther. 2018; 44: 184-193
        • DiVincenti Jr., L.
        • Rehrig A.N.
        The social nature of European rabbits (Oryctolagus cuniculus).
        J Am Assoc Lab Anim Sci. 2016; 55: 729-736
        • Zhang Q.
        • Peng Y.
        • Wang Y.
        Long-duration general anesthesia influences the intelligence of school age children.
        BMC Anesthesiol. 2017; 17: 170
        • Batalle D.
        • Munoz-Moreno E.
        • Arbat-Plana A.
        • et al.
        Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction.
        Neuroimage. 2014; 100: 24-38
        • Derrick M.
        • Luo N.L.
        • Bregman J.C.
        • et al.
        Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy?.
        J Neurosci. 2004; 24: 24-34
        • Georgiadis P.
        • Xu H.
        • Chua C.
        • et al.
        Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage.
        Stroke. 2008; 39: 3378-3388
        • Ley D.
        • Romantsik O.
        • Vallius S.
        • et al.
        High presence of extracellular hemoglobin in the periventricular white matter following preterm intraventricular hemorrhage.
        Front Physiol. 2016; 7: 330
        • Morimoto M.
        General physiology of rabbits.
        in: Houdebine L.-M. Jianglin F. Rabbit biotechnology–rabbit genomics, transgenesis, cloning and models. Springer, New York2009: 27-35
        • Drobyshevsky A.
        • Jiang R.
        • Derrick M.
        • Luo K.
        • Tan S.
        Functional correlates of central white matter maturation in perinatal period in rabbits.
        Exp Neurol. 2014; 261: 76-86
        • Gunn D.
        • Morton D.B.
        Inventory of the behaviour of New Zealand White rabbits in laboratory cages.
        Appl Anim Behav Sci. 1995; 45: 277-292
        • Meijsser F.M.
        • Kersten A.M.P.
        • Wiepkema P.R.
        • Metz J.H.M.
        An analysis of the open-field performance of subadult rabbits.
        Appl Anim Behav Sci. 1989; 24: 147-155
        • Fischer B.
        • Chavatte-Palmer P.
        • Viebahn C.
        • Navarrete Santos A.
        • Duranthon V.
        Rabbit as a reproductive model for human health.
        Reproduction. 2012; 144: 1-10
        • Ueki R.
        • Tatara T.
        • Kariya N.
        • Shimode N.
        • Hirose M.
        • Tashiro C.
        Effect of decreased fetal perfusion on placental clearance of volatile anesthetics in a dual perfused human placental cotyledon model.
        J Anesth. 2014; 28: 635-638
        • Illa M.
        • Eixarch E.
        • Batalle D.
        • et al.
        Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.
        PLoS One. 2013; 8: e76453
        • Illa M.
        • Eixarch E.
        • Muñoz-Moreno E.
        • et al.
        Neurodevelopmental effects of undernutrition and placental underperfusion in fetal growth restriction rabbit models.
        Fetal Diagn Ther. 2017; 42: 189-197
        • Baserga M.C.
        • Bertolotto C.
        • Sola A.
        Different doses of dopamine have heterogeneous effects on cerebral hemodynamics and dopamine receptors in young rabbits as measured with near infrared spectroscopy.
        Biol Neonate. 2005; 87: 229-235
        • Mitchell R.L.
        • Barbano T.E.
        • Losken H.W.
        • Siegel M.I.
        • Mooney M.P.
        Early neuromotor behavior in craniosynostotic rabbits.
        Cleft Palate Craniofac J. 2003; 40: 486-492
        • Zhang Z.
        • Saraswati M.
        • Koehler R.C.
        • Robertson C.
        • Kannan S.
        A New Rabbit Model of Pediatric Traumatic Brain Injury.
        J Neurotrauma. 2015; 32: 1369-1379
        • Levin E.D.
        • DeLuna R.
        • Uemura E.
        • Bowman R.E.
        Long-term effects of developmental halothane exposure on radial arm maze performance in rats.
        Behav Brain Res. 1990; 36: 147-154
        • Lipp H.P.
        • Pleskacheva M.G.
        • Gossweiler H.
        • et al.
        A large outdoor radial maze for comparative studies in birds and mammals.
        Neurosci Biobehav Rev. 2001; 25: 83-99
        • Wang B.
        • Yu B.
        • Karim M.
        • et al.
        Dietary sialic acid supplementation improves learning and memory in piglets.
        Am J Clin Nutr. 2007; 85: 561-569
        • Bankhead P.
        • Loughrey M.B.
        • Fernandez J.A.
        • et al.
        QuPath: Open source software for digital pathology image analysis.
        Sci Rep. 2017; 7: 16878
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • et al.
        Fiji: an open-source platform for biological-image analysis.
        Nat Methods. 2012; 9: 676-682