Advertisement

Assessment of ventricular contractility in fetuses with an estimated fetal weight less than the tenth centile

      Objective

      To determine whether abnormal global, transverse, and longitudinal ventricular contractility of the heart in fetuses with an estimated fetal weight <10th centile is present, irrespective of Doppler studies of the umbilical artery and cerebroplacental ratio.

      Study Design

      This was a retrospective study of 50 fetuses with an estimated fetal weight <10th centile that were classified based on Doppler results from the pulsatility indices of the umbilical artery and middle cerebral artery, and the calculated cerebroplacental ratio (pulsatility indices of the umbilical artery/middle cerebral artery). Right and left ventricular measurements were categorized into 3 groups: (1) global ventricular contractility (fractional area change), (2) transverse ventricular contractility (24-segment transverse fractional shortening), and (3) basal–apical longitudinal contractility (longitudinal strain, longitudinal displacement fractional shortening, and basal lateral and septal wall annular plane systolic excursion). Z scores for the above measurements were computed for fetuses with an estimated fetal weight <10th centile using the mean and standard deviation derived from normal controls. Ventricular contractility measurements were considered abnormal if their Z score values were <5th centile (z score <–1.65) or >95th centile (Z score >1.65), depending on the specific ventricular measurement.

      Results

      The average gestational age at the time of the examination was 32 weeks 4 days (standard deviation 3 weeks 4 days). None of the 50 study fetuses demonstrated absent or reverse flow of the umbilical artery Doppler waveform. Eighty-eight percent (44/50) of fetuses had one or more abnormal measurements of cardiac contractility of 1 or both ventricles. Analysis of right ventricular contractility demonstrated 78% (39/50) to have 1 or more abnormal measurements, which were grouped as follows: global contractility 38% (19/50), transverse contractility 66% (33/50); and longitudinal contractility 48% (24/50). Analysis of left ventricular contractility demonstrated 1 or more abnormal measurements in 58% (29/50) that were grouped as follows: global contractility 38% (19/50); transverse contractility 40% (20/50); and longitudinal contractility 40% (20/50). Of the 50 study fetuses, 25 had normal pulsatility index of the umbilical artery and cerebroplacental ratios, 80% of whom had 1 or more abnormalities of right ventricular contractility and 56% of whom had 1 or more abnormalities of left ventricular contractility. Abnormal ventricular contractility for these fetuses was present in all 3 groups of measurements; global, transverse, and longitudinal. Those with an isolated abnormal pulsatility index of the umbilical artery (n=11) had abnormalities of transverse contractility of the right ventricular and global contractility in the left ventricle. When an isolated cerebroplacental ratio abnormality was present, the right ventricle demonstrated abnormal global, transverse, and longitudinal contractility, with the left ventricle only demonstrating abnormalities in transverse contractility. When both the pulsatility index of the umbilical artery and cerebroplacental ratio were abnormal (3/50), transverse and longitudinal contractility measurements were abnormal for both ventricles, as well as abnormal global contractility of the left ventricle.

      Conclusions

      High rates of abnormal ventricular contractility were present in fetuses with an estimated fetal weight <10th centile, irrespective of the Doppler findings of the pulsatility index of the umbilical artery, and/or cerebroplacental ratio. Abnormalities of ventricular contractility were more prevalent in transverse measurements than global or longitudinal measurements. Abnormal transverse contractility was more common in the right than the left ventricle. Fetuses with estimated fetal weight less than the 10th centile may be considered to undergo assessment of ventricular contractility, even when Doppler measurements of the pulsatility index of the umbilical artery, and cerebroplacental ratio are normal.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rodriguez-Lopez M.
        • Cruz-Lemini M.
        • Valenzuela-Alcaraz B.
        • et al.
        Descriptive analysis of different phenotypes of cardiac remodeling in fetal growth restriction.
        Ultrasound Obstet Gynecol. 2017; 50: 207-214
        • Crispi F.
        • Miranda J.
        • Gratacos E.
        Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease.
        Am J Obstet Gynecol. 2018; 218: S869-S879
        • Cruz-Lemini M.
        • Crispi F.
        • Valenzuela-Alcaraz B.
        • et al.
        A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction.
        Am J Obstet Gynecol. 2014; 210: 552 e1-552 e22
        • Cruz-Lemini M.
        • Crispi F.
        • Valenzuela-Alcaraz B.
        • et al.
        Fetal cardiovascular remodeling persists at 6 months of life in infants with intrauterine growth restriction.
        Ultrasound Obstet Gynecol. 2016; 48: 349-356
        • Eriksson J.G.
        • Kajantie E.
        • Thornburg K.
        • Osmond C.
        Prenatal and maternal characteristics and later risk for coronary heart disease among women.
        Eur J Prevent Cardiol. 2016; 23: 385-390
        • Mierzynski R.
        • Dluski D.
        • Darmochwal-Kolarz D.
        • et al.
        Intra-uterine growth retardation as a risk factor of postnatal metabolic disorders.
        Curr Pharmaceut Biotechnol. 2016; 17: 587-596
        • Grantz K.L.
        • Hediger M.L.
        • Liu D.
        • Buck Louis G.M.
        Fetal growth standards: the NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study.
        Am J Obstet Gynecol. 2018; 218: S641-S655.e28
        • Papageorghiou A.T.
        • Kennedy S.H.
        • Salomon L.J.
        • et al.
        The INTERGROWTH-21(st) fetal growth standards: toward the global integration of pregnancy and pediatric care.
        Am J Obstet Gynecol. 2018; 218: S630-S640
        • Sovio U.
        • Smith G.C.S.
        The effect of customization and use of a fetal growth standard on the association between birthweight percentiles and adverse perinatal outcome.
        Am J Obstet Gynecol. 2018; 218: S738-S744
        • Villar J.
        • Cheikh Ismail L.
        • Staines Urias E.
        • et al.
        The satisfactory growth and development at 2 years of age of the INTERGROWTH-21 Fetal Growth Standards cohort support appropriateness for constructing international standards.
        Am J Obstet Gynecol. 2018; 218: S841-S854.e2
        • Kiserud T.
        • Piaggio G.
        • Carroli G.
        • et al.
        The World Health Organization Fetal Growth Charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight.
        PLoS Med. 2017; 14: e1002220
        • Blue N.R.
        • Beddow M.E.
        • Savabi M.
        • Katukuri V.R.
        • Chao C.R.
        Comparing the Hadlock fetal growth standard to the Eunice Kennedy Shriver National Institute of Child Health and Human Development racial/ethnic standard for the prediction of neonatal morbidity and small for gestational age.
        Am J Obstet Gynecol. 2018; 219: 474.e1-474.e12
        • Gaccioli F.
        • Aye I.
        • Sovio U.
        • Charnock-Jones D.S.
        • Smith G.C.S.
        Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers.
        Am J Obstet Gynecol. 2018; 218: S725-S737
        • Tarca A.L.
        • Hernandez-Andrade E.
        • Ahn H.
        • et al.
        Single and serial fetal biometry to detect preterm and term small- and large-for-gestational-age neonates: a longitudinal cohort study.
        PLoS One. 2016; 11: e0164161
        • Hiersch L.
        • Melamed N.
        Fetal growth velocity and body proportion in the assessment of growth.
        Am J Obstet Gynecol. 2018; 218: S700-S711.e1
        • Burton G.J.
        • Jauniaux E.
        Pathophysiology of placental-derived fetal growth restriction.
        Am J Obstet Gynecol. 2018; 218: S745-S761
        • Sultana Z.
        • Maiti K.
        • Dedman L.
        • Smith R.
        Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction?.
        Am J Obstet Gynecol. 2018; 218: S762-S773
        • Turan O.M.
        • Turan S.
        • Sanapo L.
        • Rosenbloom J.I.
        • Baschat A.A.
        Semiquantitative classification of ductus venosus blood flow patterns.
        Ultrasound Obstet Gynecol. 2014; 43: 508-514
        • Wada N.
        • Tachibana D.
        • Kurihara Y.
        • et al.
        Alterations in time intervals of ductus venosus and atrioventricular flow velocity waveforms in growth-restricted fetuses.
        Ultrasound Obstet Gynecol. 2015; 46: 221-226
        • Bahlmann F.
        • Al Naimi A.
        • Ossendorf M.
        • Schmidt-Fittschen M.
        • Willruth A.
        Hematological changes in severe early onset growth-restricted fetuses with absent and reversed end-diastolic flow in the umbilical artery.
        J Perinat Med. 2017; 45: 367-373
        • Caradeux J.
        • Martinez-Portilla R.J.
        • Basuki T.R.
        • Kiserud T.
        • Figueras F.
        Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis.
        Am J Obstet Gynecol. 2018; 218: S774-S782.e21
        • DeVore G.R.
        The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses.
        Am J Obstet Gynecol. 2015; 213: 5-15
        • Berkley E.
        • Chauhan S.P.
        • Abuhamad A.
        Doppler assessment of the fetus with intrauterine growth restriction.
        Am J Obstet Gynecol. 2012; 206: 300-308
        • Cruz-Lemini M.
        • Crispi F.
        • Valenzuela-Alcaraz B.
        • et al.
        Value of annular M-mode displacement vs tissue Doppler velocities to assess cardiac function in intrauterine growth restriction.
        Ultrasound Obstet Gynecol. 2013; 42: 175-181
        • Comas M.
        • Crispi F.
        • Cruz-Martinez R.
        • Martinez J.M.
        • Figueras F.
        • Gratacos E.
        Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction.
        Am J Obstet Gynecol. 2010; 203: 45.e1-45.e7
        • Crispi F.
        • Hernandez-Andrade E.
        • Pelsers M.M.
        • et al.
        Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses.
        Am J Obstet Gynecol. 2008; 199: 254.e1-254.e8
        • Comas M.
        • Crispi F.
        • Gomez O.
        • Puerto B.
        • Figueras F.
        • Gratacos E.
        Gestational age- and estimated fetal weight-adjusted reference ranges for myocardial tissue Doppler indices at 24-41 weeks' gestation.
        Ultrasound Obstet Gynecol. 2011; 37: 57-64
        • DeVore G.R.
        • Polanco B.
        • Satou G.
        • Sklansky M.
        Two-dimensional speckle tracking of the fetal heart: a practical step-by-step approach for the fetal sonologist.
        J Ultrasound Med. 2016; 35: 1765-1781
        • DeVore G.R.
        • Klas B.
        • Satou G.
        • Sklansky M.
        Evaluation of fetal left ventricular size and function using speckle-tracking and the Simpson rule.
        J Ultrasound Med. 2019; 38: 1209-1221
        • DeVore G.R.
        • Klas B.
        • Satou G.
        • Sklansky M.
        Speckle tracking of the basal lateral and septal wall annular plane systolic excursion of the right and left ventricles of the fetal heart.
        J Ultrasound Med. 2019; 38: 1309-1318
        • DeVore G.R.
        • Klas B.
        • Satou G.
        • Sklansky M.
        Longitudinal annular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities.
        J Ultrasound Med. 2018; 37: 1159-1171
        • DeVore G.R.
        • Klas B.
        • Satou G.
        • Sklansky M.
        Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function.
        J Ultrasound Med. 2018; 37: 1129-1141
        • DeVore G.R.
        • Klas B.
        • Satou G.
        • Sklansky M.
        Quantitative evaluation of the fetal right and left ventricular fractional area change using speckle tracking technology.
        Ultrasound Obstet Gynecol. 2019; 53: 219-228
        • Hadlock F.P.
        • Harrist R.B.
        • Sharman R.S.
        • Deter R.L.
        • Park S.K.
        Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study.
        Am J Obstet Gynecol. 1985; 151: 333-337
        • Ebbing C.
        • Rasmussen S.
        • Kiserud T.
        Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements.
        Ultrasound Obstet Gynecol. 2007; 30: 287-296
        • Buckberg G.D.
        • Nanda N.C.
        • Nguyen C.
        • Kocica M.J.
        What is the heart? Anatomy, function, pathophysiology, and misconceptions.
        J Cardiovasc Dev Dis. 2018; 5
        • Torrent-Guasp F.
        • Buckberg G.D.
        • Clemente C.
        • Cox J.L.
        • Coghlan H.C.
        • Gharib M.
        The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart.
        Semin Thorac Cardiovasc Surg. 2001; 13: 301-319
        • Goldstein J.A.
        • Tweddell J.S.
        • Barzilai B.
        • Yagi Y.
        • Jaffe A.S.
        • Cox J.L.
        Importance of left ventricular function and systolic ventricular interaction to right ventricular performance during acute right heart ischemia.
        J Am Coll Cardiol. 1992; 19: 704-711
        • Hoffman D.
        • Sisto D.
        • Frater R.W.
        • Nikolic S.D.
        Left-to-right ventricular interaction with a noncontracting right ventricle.
        J Thorac Cardiovasc Surg. 1994; 107: 1496-1502
        • DeVore G.R.
        Computing the Z score and centiles for cross-sectional analysis: a practical approach.
        J Ultrasound Med. 2017; 36: 459-473
        • Perez-Cruz M.
        • Cruz-Lemini M.
        • Fernandez M.T.
        • et al.
        Fetal cardiac function in late-onset intrauterine growth restriction vs small-for-gestational age, as defined by estimated fetal weight, cerebroplacental ratio and uterine artery Doppler.
        Ultrasound Obstet Gynecol. 2015; 46: 465-471
        • Valenzuela-Alcaraz B.
        • Crispi F.
        • Bijnens B.
        • et al.
        Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally.
        Circulation. 2013; 128: 1442-1450
        • DeVore G.R.
        • Cuneo B.F.
        • Satou G.
        • Sklansky M.
        How to determine the percent of study subjects below the 5th or above the 95th centiles of the control group when only the mean and standard deviations are provided.
        Ultrasound Obstet Gynecol. 2019; 54: 139-141
        • Buckberg G.D.
        • Hoffman J.I.
        • Coghlan H.C.
        • Nanda N.C.
        Ventricular structure-function relations in health and disease: Part I. The normal heart.
        Eur J cardiothorac Surg. 2015; 47: 587-601
        • Buckberg G.D.
        Basic science review: the helix and the heart.
        J Thorac Cardiovasc Surg. 2002; 124: 863-883
        • Mekkaoui C.
        • Porayette P.
        • Jackowski M.P.
        • et al.
        Diffusion MRI tractography of the developing human fetal heart.
        PLoS One. 2013; 8: e72795
        • Cox J.L.
        • Bardy G.H.
        • Damiano Jr., R.J.
        • et al.
        Right ventricular isolation procedures for nonischemic ventricular tachycardia.
        J Thorac Cardiovasc Surg. 1985; 90: 212-224
        • Buckberg G.D.
        The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration.
        Eur J Cardiothorac Surg. 2006; 29: S272-S278
        • Di Salvo G.
        • Russo M.G.
        • Paladini D.
        • et al.
        Two-dimensional strain to assess regional left and right ventricular longitudinal function in 100 normal foetuses.
        Eur J Echocardiogr. 2008; 9: 754-756
        • Buckberg G.
        • Hoffman J.I.
        Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum.
        J Thorac Cardiovasc Surg. 2014; 148: 3166-3171.e1-4
        • Kagan A.
        Dynamic responses of the right ventricle following extensive damage by cauterization.
        Circulation. 1952; 5: 816-823
        • Arduini D.
        • Rizzo G.
        • Pennestri F.
        • Romanini C.
        Modulation of echocardiographic parameters by fetal behaviour.
        Prenat Diagn. 1987; 7: 179-187
        • DeVore G.R.
        • Siassi B.
        • Platt L.D.
        Fetal echocardiography. IV. M-mode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus.
        Am J Obstet Gynecol. 1984; 150: 981-988
        • Sorensen K.E.
        • Borlum K.G.
        Fetal heart function in response to short-term maternal exercise.
        Br J Obstet Gynaecol. 1986; 93: 310-313
        • Sorensen K.E.
        • Borlum K.G.
        Acute effects of maternal smoking on human fetal heart function.
        Acta Obstet Gynecol Scand. 1987; 66: 217-220
        • St John Sutton M.G.
        • Gewitz M.H.
        • Shah B.
        • et al.
        Quantitative assessment of growth and function of the cardiac chambers in the normal human fetus: a prospective longitudinal echocardiographic study.
        Circulation. 1984; 69: 645-654
        • Wladimiroff J.W.
        • McGhie J.S.
        M-mode ultrasonic assessment of fetal cardiovascular dynamics.
        Br J Obstet Gynaecol. 1981; 88: 1241-1245
        • Mao Y.K.
        • Zhao B.W.
        • Wang B.
        Z-score reference ranges for angular M-mode displacement at 22-40 weeks' gestation.
        Fetal Diagn Ther. 2017; 41: 115-126
        • Messing B.
        • Gilboa Y.
        • Lipschuetz M.
        • Valsky D.V.
        • Cohen S.M.
        • Yagel S.
        Fetal tricuspid annular plane systolic excursion (f-TAPSE): evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode.
        Ultrasound Obstet Gynecol. 2013; 42: 182-188
        • Tedesco G.D.
        • de Souza Bezerra M.
        • Barros F.S.B.
        • et al.
        Fetal heart function by tricuspid annular plane systolic excursion and ventricular shortening fraction using STIC M-mode: reference ranges and validation.
        Am J Perinatol. 2017; 34: 1354-1361
        • Comas M.
        • Crispi F.
        • Cruz-Martinez R.
        • Figueras F.
        • Gratacos E.
        Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses.
        Am J Obstet Gynecol. 2011; 205: 57 e1-57 e6
        • Barker P.C.
        • Houle H.
        • Li J.S.
        • Miller S.
        • Herlong J.R.
        • Camitta M.G.
        Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging.
        Echocardiography. 2009; 26: 28-36
        • Brooks P.A.
        • Khoo N.S.
        • Hornberger L.K.
        Systolic and diastolic function of the fetal single left ventricle.
        J Am Soc Echocardiogr. 2014; 27: 972-977
        • Fan X.
        • Zhou Q.
        • Zeng S.
        • et al.
        Impaired fetal myocardial deformation in intrahepatic cholestasis of pregnancy.
        J Ultrasound Med. 2014; 33: 1171-1177
        • Ishii T.
        • McElhinney D.B.
        • Harrild D.M.
        • et al.
        Circumferential and longitudinal ventricular strain in the normal human fetus.
        J Am Soc Echocardiogr. 2012; 25: 105-111
        • Kapusta L.
        • Mainzer G.
        • Weiner Z.
        • et al.
        Second trimester ultrasound: reference values for two-dimensional speckle tracking-derived longitudinal strain, strain rate and time to peak deformation of the fetal heart.
        J Am Soc Echocardiogr. 2012; 25: 1333-1341
        • Matsui H.
        • Germanakis I.
        • Kulinskaya E.
        • Gardiner H.M.
        Temporal and spatial performance of vector velocity imaging in the human fetal heart.
        Ultrasound Obstet Gynecol. 2011; 37: 150-157
        • Van Mieghem T.
        • Giusca S.
        • DeKoninck P.
        • et al.
        Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome.
        J Am Soc Echocardiogr. 2010; 23: 301-308
        • Kiserud T.
        • Ebbing C.
        • Kessler J.
        • Rasmussen S.
        Fetal cardiac output, distribution to the placenta and impact of placental compromise.
        Ultrasound Obstet Gynecol. 2006; 28: 126-136
        • Rizzo G.
        • Arduini D.
        Fetal cardiac function in intrauterine growth retardation.
        Am J Obstet Gynecol. 1991; 165: 876-882
        • Lee J.Y.
        • Kim Y.L.
        • Jeong J.E.
        • Ahn J.W.
        Prediction of pregnancy complication occurrence using fetal cardiac output assessments made by ultrasonography at 20 to 24 weeks of gestation.
        Obstet Gynecol Sci. 2017; 60: 336-342
        • De Smedt M.C.
        • Visser G.H.
        • Meijboom E.J.
        Fetal cardiac output estimated by Doppler echocardiography during mid- and late gestation.
        Am J Cardiol. 1987; 60: 338-342
        • Goldinfeld M.
        • Weiner E.
        • Peleg D.
        • Shalev E.
        • Ben-Ami M.
        Evaluation of fetal cardiac contractility by two-dimensional ultrasonography.
        Prenat Diagn. 2004; 24: 799-803
        • ACOG Practice bulletin no
        134: fetal growth restriction.
        Obstet Gynecol. 2013; 121: 1122-1133
        • Royal College of Obstetricians and Gynecologists
        The invetigation and management of the small-for-gestaional age fetus. Green top guideline no. 31. 2013.
        Royal College of Obstetricians and Gynecologists, London2013
        • Lausman A.
        • Kingdom J.
        Intrauterine growth restriction: screening, diagnosis, and management.
        J Obstet Gynaecol Can. 2013; 35: 741-748
        • New Zealand Maternal Fetal Medicine Network, ed
        Guidelines for the managemnt of suspected small for gestational age singleton pregnancies and infants after 34 weeks’ gestation. New Zealand Maternal Fetal Medicine Network, Auckland, New Zealand2014
        • Vayssiere C.
        • Sentilhes L.
        • Ego A.
        • et al.
        Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians.
        Eur J Obstet Gynecol Reprod Biol. 2015; 193: 10-18
        • Fetal growth restriction-recognition, diagnosis managment
        Clinical practice guideline no. 29. 2017. Version 1.1.
        Institute of Obstetricians and Gynecologists Royal College of Physicians of Ireland, Dublin2017
        • Gordijn S.J.
        • Beune I.M.
        • Thilaganathan B.
        • et al.
        Consensus definition of fetal growth restriction: a Delphi procedure.
        Ultrasound Obstet Gynecol. 2016; 48: 333-339
        • McCowan L.M.
        • Figueras F.
        • Anderson N.H.
        Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy.
        Am J Obstet Gynecol. 2018; 218: S855-S868
        • Figueras F.
        • Caradeux J.
        • Crispi F.
        • Eixarch E.
        • Peguero A.
        • Gratacos E.
        Diagnosis and surveillance of late-onset fetal growth restriction.
        Am J Obstet Gynecol. 2018; 218: S790-S802.e1
        • Girsen A.
        • Ala-Kopsala M.
        • Makikallio K.
        • Vuolteenaho O.
        • Rasanen J.
        Cardiovascular hemodynamics and umbilical artery N-terminal peptide of proB-type natriuretic peptide in human fetuses with growth restriction.
        Ultrasound Obstet Gynecol. 2007; 29: 296-303
        • Girsen A.
        • Makikallio K.
        • Hiilesmaa V.
        • Hamalainen E.
        • Teramo K.
        • Rasanen J.
        The relationship between human fetal cardiovascular hemodynamics and serum erythropoietin levels in growth-restricted fetuses.
        Am J Obstet Gynecol. 2007; 196: 467.e1-467.e6
        • Crispi F.
        • Paules C.
        • Dantas A.
        • et al.
        Premature placental aging in term small for gestational age and fetal growth restriction.
        Am J Obstet Gynecol. 2019; 220: s145
        • Kumar S.
        • Figueras F.
        • Ganzevoort W.
        • Turner J.
        • McCowan L.
        Using cerebroplacental ratio in non-SGA fetuses to predict adverse perinatal outcome: caution is required.
        Ultrasound Obstet Gynecol. 2018; 52: 427-429
        • Hobbins J.C.
        • Gumina D.L.
        • Zaretsky M.
        • Driver C.
        • Wilcox A.
        • DeVore G.R.
        Size and shape of the four-chamber view of the fetal heart in fetuses with an estimated fetal weight less than the tenth centile.
        Am J Obstet Gynecol. 2019; 221: 495.e1-495.e9
        • DeVore G.R.
        • Zaretsky M.
        • Gumina D.L.
        • Hobbins J.C.
        Right and left ventricular 24-segment sphericity index is abnorml in small-for-gestational-age fetuses.
        Ultrasound Obstet Gynecol. 2018; 52: 243-249

      References

        • DeVore G.R.
        • Cuneo B.F.
        • Satou G.
        • Sklansky M.
        How to determine the percent of study subjects below the 5th or above the 95th centiles of the control group when only the mean and standard deviations are provided.
        Ultrasound Obstet Gnecol. 2019; 54: 139-141
        • Perez-Cruz M.
        • Cruz-Lemini M.
        • Fernandez M.T.
        • et al.
        Fetal cardiac function in late-onset intrauterine growth restriction vs small-for-gestational age, as defined by estimated fetal weight, cerebroplacental ratio and uterine artery Doppler.
        Ultrasound Obstet Gnecol. 2015; 46: 465-471