Advertisement

The differential diagnoses of uterine leiomyomas and leiomyosarcomas using DNA and RNA sequencing

      Background

      Although uterine leiomyomas and leiomyosarcomas are considered biologically unrelated tumors, they share morphologic and histologic characteristics that complicate their differential diagnosis. The long-term therapeutic option for leiomyoma is laparoscopic myomectomy with morcellation, particularly for patients who wish to preserve their fertility. However, because of the potential dissemination of undiagnosed or hidden leiomyosarcoma from morcellation, there is a need to develop a preoperative assessment of malignancy risk.

      Objective

      Through an integrated comparative genomic and transcriptomic analysis, we aim to identify differential genetic targets in leiomyomas vs leiomyosarcomas using next-generation sequencing as the first step toward preoperative differential diagnosis.

      Study Design

      Targeted sequencing of DNA and RNA coding regions for solid tumor–associated genes was performed on formalin-fixed paraffin-embedded samples from 13 leiomyomas and 13 leiomyosarcoma cases. DNA sequencing was used to identify copy number variations, single-nucleotide variants, and small insertions/deletions. RNA sequencing was used to identify gene fusions, splice variants, and/or differential gene expression profiles.

      Results

      In leiomyosarcomas, tumor mutation burden was higher in terms of copy number variations, single nucleotide variants, small insertions/deletions, and gene fusions compared with leiomyomas. For copy number variations, 20 genes were affected by deletions in leiomyosarcomas, compared with 6 observed losses in leiomyomas. Gains (duplications) were identified in 19 genes in leiomyosarcomas, but only 3 genes in leiomyomas. The most common mutations (single-nucleotide variants and insertions/deletions) for leiomyosarcomas were identified in 105 genes of all analyzed leiomyosarcomas; 82 genes were affected in leiomyomas. Of note, 1 tumor previously diagnosed as leiomyosarcoma was established as inflammatory myofibroblastic tumor along this study with a novel ALK-TNS1 fusion. Finally, a differential transcriptomic profile was observed for 11 of 55 genes analyzed in leiomyosarcomas; 8.5% of initially diagnosed leiomyosarcomas showed high-confidence, novel gene fusions that were associated with these tumors.

      Conclusion

      Through integrated comparative genomic and transcriptomic analyses, we identified novel differential genetic targets that potentially differentiate leiomyosarcomas and leiomyomas. This provides a new insight into the differential diagnosis of these myometrial tumors.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baird D.D.
        • Dunson D.B.
        • Hill M.C.
        • Cousins D.
        • Schectman J.M.
        High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence.
        Am J Obstet Gynecol. 2003; 188: 100-107
        • Parker W.H.
        Etiology, symptomatology, and diagnosis of uterine myomas.
        Fertil Steril. 2007; 87: 725-736
        • Bulun S.E.
        Uterine fibroids.
        N Engl J Med. 2013; 369: 1344
        • Donnez J.
        • Tatarchuk T.F.
        • Bouchard P.
        • et al.
        Ulipristal acetate versus placebo for fibroid treatment before surgery.
        N Engl J Med. 2012; 366: 409-420
        • Singh S.S.
        • Marsh E.E.
        Focus on uterine fibroids: evolving options to optimize care.
        Am J Obstet Gynecol. 2017; 217: 626
        • Bhave Chittawar P.
        • Franik S.
        • Pouwer A.W.
        • Farquhar C.
        Minimally invasive surgical techniques versus open myomectomy for uterine fibroids.
        Cochrane Database Syst Rev. 2014; 10: CD004638
        • Bogani G.
        • Ditto A.
        • Martinelli F.
        • et al.
        Morcellator’s port-site metastasis of a uterine smooth muscle tumor of uncertain malignant potential after minimally invasive myomectomy.
        J Minim Invasive Gynecol. 2016; 23: 647-649
        • Skorstad M.
        • Kent A.
        • Lieng M.
        Uterine leiomyosarcoma–incidence, treatment, and the impact of morcellation: a nationwide cohort study.
        Acta Obstet Gynecol Scand. 2016; 95: 984-990
        • Giuntoli II, R.L.
        • Metzinger D.S.
        • DiMarco C.S.
        • et al.
        Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy.
        Gynecol Oncol. 2003; 89: 460-469
        • Kobayashi H.
        • Uekuri C.
        • Akasaka J.
        • et al.
        The biology of uterine sarcomas: a review and update.
        Mol Clin Oncol. 2013; 1: 599-609
        • Lusby K.
        • Savannah K.B.
        • Demicco E.G.
        • et al.
        Uterine leiomyosarcoma management, outcome, and associated molecular biomarkers: a single institution’s experience.
        Ann Surg Oncol. 2013; 20: 2364-2372
        • Amant F.
        • Coosemans A.
        • Debiec-Rychter M.
        • Timmerman D.
        • Vergote I.
        Clinical management of uterine sarcomas.
        Lancet Oncol. 2009; 10: 1188-1198
        • Petrillo M.
        • Dessole M.
        • Chiantera V.
        Peritoneal sarcomatosis 5 years after laparoscopic morcellation of uterine leiomyoma.
        Am J Obstet Gynecol. 2018; 218: 626
        • Seagle B.L.
        • Alexander A.L.
        • Strohl A.E.
        • Shahabi S.
        Discussing sarcoma risks during informed consent for nonhysterectomy management of fibroids: an unmet need.
        Am J Obstet Gynecol. 2018; 218: 103.e1-103.e5
        • Pritts E.A.
        • Parker W.H.
        • Brown J.
        • Olive D.L.
        Outcome of occult uterine leiomyosarcoma after surgery for presumed uterine fibroids: a systematic review.
        J Minim Invasive Gynecol. 2015; 22: 26-33
        • Parker W.
        • Berek J.S.
        • Pritts E.
        • et al.
        An open letter to the Food and Drug Administration regarding the use of morcellation procedures in women having surgery for presumed uterine myomas.
        J Minim Invasive Gynecol. 2016; 23: 303-308
        • Halaska M.J.
        • Haidopoulos D.
        • Guyon F.
        • et al.
        European Society of Gynecological Oncology statement on fibroid and uterine morcellation.
        Int J Gynecol Cancer. 2017; 27: 189-192
        • Levitz J.
        Fibroid surgery puts doctor fighting cancer diagnosis in the spotlight. Wall Street J 2013, December.
        (Retrieved from:) ([13.09.15]. Accessed December 19, 2013)
        • Roehr B.
        Amy Josephine Reed.
        BMJ. 2017; 357: j2827
        • Rousseau M.
        • Morel A.
        • Dechoux S.
        • et al.
        Can the risks associated with uterine sarcoma morcellation really be prevented? Overview of the role of uterine morcellation in 2018.
        J Gynecol Obstet Hum Reprod. 2018; 47: 341-349
        • Siedhoff M.T.
        • Doll K.M.
        • Clarke-Pearson D.L.
        • Rutstein S.E.
        Laparoscopic hysterectomy with morcellation vs abdominal hysterectomy for presumed fibroids: an updated decision analysis following the 2014 Food and Drug Administration safety communications.
        Am J Obstet Gynecol. 2017; 216: 259.e1-259.e6
        • Brölmann H.
        • Tanos V.
        • Grimbizis G.
        • et al.
        Options on fibroid morcellation: a literature review.
        Gynecol Surg. 2015; 12: 3-15
        • Shwayder J.
        • Sakhel K.
        Imaging for uterine myomas and adenomyosis.
        J Minim Invasive Gynecol. 2014; 21: 362-376
        • Cho H.Y.
        • Kim K.
        • Kim Y.B.
        • No J.H.
        Differential diagnosis between uterine sarcoma and leiomyoma using preoperative clinical characteristics.
        J Obstet Gynaecol Res. 2016; 42: 313-318
        • Shah S.H.
        • Jagannathan J.P.
        • Krajewski K.
        • O’Regan K.N.
        • George S.
        • Ramaiya N.H.
        Uterine sarcomas: then and now.
        AJR Am J Roentgenol. 2012; 199: 213-223
        • Leiser A.L.
        • Anderson S.E.
        • Nonaka D.
        • et al.
        Apoptotic and cell cycle regulatory markers in uterine leiomyosarcoma.
        Gynecol Oncol. 2006; 101: 86-91
        • Ravegnini G.
        • Mariño-Enriquez A.
        • Slater J.
        • et al.
        MED12 mutations in leiomyosarcoma and extrauterine leiomyoma.
        Mod Pathol. 2013; 26: 743-749
        • Bertsch E.
        • Qiang W.
        • Zhang Q.
        • et al.
        MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma.
        Mod Pathol. 2014; 27: 1144-1153
        • Jour G.
        • Scarborough J.D.
        • Jones R.L.
        • et al.
        Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics.
        Hum Pathol. 2014; 45: 1563-1571
        • Mehine M.
        • Mäkinen N.
        • Heinonen H.R.
        • Aaltonen L.A.
        • Vahteristo P.
        Genomics of uterine leiomyomas: insights from high-throughput sequencing.
        Fertil Steril. 2014; 102: 621-629
        • Mäkinen N.
        • Kämpjärvi K.
        • Frizzell N.
        • Bützow R.
        • Vahteristo P.
        Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors.
        Mol Cancer. 2017; 16: 101
        • Mäkinen N.
        • Aavikko M.
        • Heikkinen T.
        • et al.
        Exome sequencing of uterine leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12.
        PLoS Genet. 2016; 12: e1005850
        • Cuppens T.
        • Moisse M.
        • Depreeuw J.
        • et al.
        Integrated genome analysis of uterine leiomyosarcoma to identify novel driver genes and targetable pathways.
        Int J Cancer. 2018; 142: 1230-1243
        • Amant F.
        • Van den Bosch T.
        • Vergote I.
        • Timmerman D.
        Morcellation of uterine leiomyomas: a plea for patient triage.
        Lancet Oncol. 2015; 16: 1454-1456
        • Hendrickson M.R.
        • Tavassoli F.A.
        • Kempson R.L.
        • McCluggage W.G.
        • Haller U.
        • Kubik-Huch R.A.
        Mesenchymal tumours and related lesions.
        in: Tavassoli F.A. Devilee P. Tumours of the breast and female genital organs. IARC, Lyon, France2003: 233
        • Fletcher C.D.
        The evolving classification of soft tissue tumours: an update based on the new 2013 WHO classification.
        Histopathology. 2014; 64: 2-11
        • Dunn T.
        • Berry G.
        • Emig-Agius D.
        • et al.
        Pisces: an accurate and versatile variant caller for somatic and germline next-generation sequencing data.
        Bioinformatics. 2019; 35: 1579-1581
        • Robinson M.D.
        • McCarthy D.J.
        • Smyth G.K.
        edgeR: a bioconductor package for differential expression analysis of digital gene expression data.
        Bioinformatics. 2010; 26: 139-140
        • Gentleman R.C.
        • Carey V.J.
        • Bates D.M.
        • et al.
        Bioconductor: open software development for computational biology and bioinformatics.
        Genome Biol. 2004; 5: R80
        • Yatabe Y.
        ALK FISH and IHC: you cannot have one without the other.
        J Thorac Oncol. 2015; 10: 548-550
        • Savic S.
        • Diebold J.
        • Zimmermann A.K.
        • et al.
        Screening for ALK in non-small cell lung carcinomas: 5A4 and D5F3 antibodies perform equally well, but combined use with FISH is recommended.
        Lung Cancer. 2015; 89: 104-109
        • Sandberg A.A.
        Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma.
        Cancer Genet Cytogenet. 2005; 161: 1-19
        • Yang J.
        • Du X.
        • Chen K.
        • et al.
        Genetic aberrations in soft tissue leiomyosarcoma.
        Cancer Lett. 2009; 275: 1-8
        • Raish M.
        • Khurshid M.
        • Ansari M.A.
        • et al.
        Analysis of molecular cytogenetic alterations in uterine leiomyosarcoma by array-based comparative genomic hybridization.
        J Cancer Res Clin Oncol. 2012; 138: 1173-1186
        • Lehtonen R.
        • Kiuru M.
        • Vanharanta S.
        • et al.
        Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors.
        Am J Pathol. 2004; 164: 17-22
        • Pérot G.
        • Croce S.
        • Ribeiro A.
        • et al.
        MED12 alterations in both human benign and malignant uterine soft tissue tumors.
        PLoS One. 2012; 7: e40015
        • Mehine M.
        • Kaasinen E.
        • Mäkinen N.
        • et al.
        Characterization of uterine leiomyomas by whole-genome sequencing.
        N Engl J Med. 2013; 369: 43-53
        • Slatter T.L.
        • Hsia H.
        • Samaranayaka A.
        Loss of ATRX and DAXX expression identifies poor prognosis for smooth muscle tumours of uncertain malignant potential and early stage uterine leiomyosarcoma.
        J Pathol Clin Res. 2015; 1: 95-105
        • Cuppens T.
        • Tuyaerts S.
        • Amant F.
        Potential therapeutic targets in uterine sarcomas.
        Sarcoma. 2015; 2015: 243298
        • Burghel G.J.
        • Lin W.Y.
        • Whitehouse H.
        • et al.
        Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer.
        PLoS One. 2013; 8: e83859
        • Caliò A.
        • Nottegar A.
        • Gilioli E.
        • et al.
        ALK/EML4 fusion gene may be found in pure squamous carcinoma of the lung.
        J Thorac Oncol. 2014; 9: 729-732
        • Chapman A.M.
        • Sun K.Y.
        • Ruestow P.
        Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.
        Lung Cancer. 2016; 102: 122-134
        • Dubey A.P.
        • Pathi N.
        • Viswanath S.
        New insights into anaplastic lymphoma kinase-positive nonsmall cell lung cancer.
        Indian J Cancer. 2017; 54: 203-208
        • Pickett J.L.
        • Chou A.
        • Andrici J.A.
        • et al.
        Inflammatory myofibroblastic tumors of the female genital tract are under-recognized: a low threshold for ALK immunohistochemistry is required.
        Am J Surg Pathol. 2017; 41: 1433-1442
        • Parra-Herran C.
        • Schoolmeester J.K.
        • Yuan L.
        • et al.
        Myxoid leiomyosarcoma of the uterus: a clinicopathologic analysis of 30 cases and review of the literature with reappraisal of its distinction from other uterine myxoid mesenchymal neoplasms.
        Am J Surg Pathol. 2016; 40: 285-301
        • Wang Q.
        • Fang W.H.
        • Krupinski J.
        • Kumar S.
        • Slevin M.
        • Kumar P.
        “Pax genes in embryogenesis and oncogenesis”: review.
        J Cell Mol Med. 2008; 12: 2281-2294
        • Yatsenko S.A.
        • Mittal P.
        • Wood-Trageser M.A.
        • et al.
        Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays.
        Fertil Steril. 2017; 107: 457-466.e9
        • Chua Y.L.
        • Ito Y.
        • Pole J.C.
        • et al.
        The NRG1 gene is frequently silenced by methylation in breast cancers and is a strong candidate for the 8p tumour suppressor gene.
        Oncogene. 2009; 28: 4041-4052
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra224
        • Maher C.A.
        • Kumar-Sinha C.
        • Cao X.
        • et al.
        Transcriptome sequencing to detect gene fusions in cancer.
        Nature. 2009; 458: 97-101
        • Klijn C.
        • Durinck S.
        • Stawiski E.W.
        • et al.
        A comprehensive transcriptional portrait of human cancer cell lines.
        Nat Biotechnol. 2015; 33: 306-312
        • Raphael J.
        • Desautels D.
        • Pritchard K.I.
        • Petkova E.
        • Shah P.S.
        Phosphoinositide 3-kinase inhibitors in advanced breast cancer: a systematic review and meta-analysis.
        Eur J Cancer. 2018; 91: 38-46
        • Costa R.L.B.
        • Han H.S.
        • Gradishar W.J.
        Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review.
        Breast Cancer Res Treat. 2018; 169: 397-406
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Yu G.
        • Wang L.G.
        • Han Y.
        • He Q.Y.
        clusterProfiler: an R package for comparing biological themes among gene clusters.
        OMICS. 2012; 16: 284-287
        • Houang M.
        • Toon C.W.
        • Clarkson A.
        • et al.
        Reflex ALK immunohistochemistry is feasible and highly specific for ALK gene rearrangements in lung cancer.
        Pathology. 2014; 46: 383-388
        • Kanehisa M.
        • Goto S.
        • Sato Y.
        • Furumichi M.
        • Tanabe M.
        KEGG for integration and interpretation of large-scale molecular data sets.
        Nucleic Acids Res. 2012; 40: D109-D114
        • Wickham H.
        ggplot2: elegant graphics for data analysis.
        Springer-Verlag, New York2016
        • Wickham H.
        tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1.
        (Available at:) (Accessed November 14, 2017)
        • Chen H.
        VennDiagram: Generate High-Resolution Venn and Euler Plots. R package version 1.6.17.
        (Available at:) (Accessed April 16, 2016)
        • Obenchain V.
        • Lawrence M.
        • Carey V.
        • Gogarten S.
        • Shannon P.
        • Morgan M.
        VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants.
        Bioinformatics. 2014; 30: 2076-2078
        • Zhao S.
        • Guo Y.
        • Sheng Q.
        • Shyr Y.
        Advanced heat map and clustering analysis using heatmap3.
        Biomed Res Int. 2014; 2014 (R package version 1.1.1. Available at:) (Accessed June 27, 2019): 986048
        • Huber W.
        • Carey V.J.
        • Gentleman R.
        • et al.
        Orchestrating high-throughput genomic analysis with Bioconductor.
        Nat Methods. 2015; 12: 115-121
        • Musgrove E.A.
        • Caldon C.E.
        • Barraclough J.
        • et al.
        Cyclin D as a therapeutic target in cancer.
        Nat Rev Cancer. 2011; 11: 558-572
        • Yu L.
        • Saile K.
        • Swartz C.D.
        • et al.
        Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas.
        Mol Med. 2008; 14: 264-275
        • Toro J.R.
        • Nickerson M.L.
        • Wei M.H.
        • et al.
        Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America.
        Am J Hum Genet. 2003; 73: 95-106
        • Zhou W.Y.
        • Zheng H.
        • Du X.L.
        • et al.
        Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients.
        Cancer Biol Med. 2016; 13: 260-268
        • Hayashi T.
        • Shimamura Y.
        • Saegusa T.
        • et al.
        Molecular mechanisms of uterine leiomyosarcomas: involvement of defect in LMP2 expression.
        Gene Regul Syst Bio. 2008; 2: 297-305
        • Schachtschneider K.M.
        • Liu Y.
        • Mäkeläinen S.
        • et al.
        Oncopig Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas.
        Sci Rep. 2017; 7: 2624
        • Francis A.M.
        • Alexander A.
        • Liu Y.
        • et al.
        CDK4/6 Inhibitors Sensitize Rb-positive Sarcoma Cells to Wee1 Kinase Inhibition through Reversible Cell-Cycle Arrest.
        Mol Cancer Ther. 2017; 16: 1751-1764
        • Zhan X.
        • Bates B.
        • Hu X.G.
        • et al.
        The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors.
        Mol Cell Biol. 1988; 8: 3487-3495
        • Giacomini A.
        • Chiodelli P.
        • Matarazzo S.
        • et al.
        Blocking the FGF/FGFR system as a “two-compartment” antiangiogenic/antitumor approach in cancer therapy.
        Pharmacol Res. 2016; 107: 172-185
        • Jeffers M.D.
        • Richmond J.A.
        • Macaulay E.M.
        Overexpression of the c-myc proto-oncogene occurs frequently in uterine sarcomas.
        Mod Pathol. 1995; 8: 701-704
        • Presta M.
        • Chiodelli P.
        • Giacomini A.
        • et al.
        Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach.
        Pharmacol Ther. 2017; 179: 171-187
        • Toledo F.
        • Wahl G.M.
        MDM2 and MDM4: p53 regulators as targets in anticancer therapy.
        Int J Biochem Cell Biol. 2007; 39: 1476-1482
        • Atwal G.S.
        • Kirchhoff T.
        • Bond E.E.
        • et al.
        Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene.
        Proc Natl Acad Sci U S A. 2009; 106: 10236-10241
        • Barnabas N.
        • Sanchez J.
        • Chitale D.
        • Adeyinka A.
        Array-CGH shows amplification of 8q including MYC as the sole aberration in a leiomyosarcoma of the female lower genital tract.
        Cytogenet Genome Res. 2014; 142: 245-248
        • Groisberg R.
        • Hong D.S.
        • Holla V.
        • et al.
        Clinical genomic profiling to identify actionable alterations for investigational therapies in patients with diverse sarcomas.
        Oncotarget. 2017; 8: 39254-39267