Advertisement

Placental colonization with periodontal pathogens: the potential missing link

Published:April 30, 2019DOI:https://doi.org/10.1016/j.ajog.2019.04.029
      Observational studies demonstrate that women with severe periodontitis have a higher risk of adverse pregnancy outcomes like preterm birth and low birthweight. Standard treatment for periodontitis in the form of scaling and root planing during the second trimester failed to reduce the risk of preterm or low birthweight. It is premature to dismiss the association between periodontitis and adverse pregnancy outcomes because one explanation for the failure of scaling and root planing to reduce the risk of adverse pregnancy outcomes is that periodontal pathogens spread to the placental tissue prior to periodontal treatment. In the placenta, orally derived organisms could cause direct tissue damage or mediate a maternal immune response that impairs the growth of the developing fetus. Sequencing studies demonstrate the presence of organisms derived from the oral microbiome in the placenta, but DNA-based sequencing studies should not be the only technique to evaluate the placental microbiome because they may not detect important shifts in the metabolic capability of the microbiome. In humans, polymerase chain reaction and histology have detected periodontal pathogens in placental tissue in association with multiple adverse pregnancy outcomes. We conclude that both placental and oral microbiomes may play a role in periodontitis-associated adverse pregnancy outcomes. However, the measure to determine the association between periodontal pathogens in the placenta and adverse pregnancy outcomes should be the amount and prevalence, not the mere presence of such microorganisms. Placental colonization with periodontal pathogens thus potentially represents the missing link between periodontitis and adverse pregnancy outcomes.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sanz M.
        • Kornman K.
        Periodontitis and adverse pregnancy outcomes: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases.
        J Periodontol. 2013; 84: S164-S169
        • Fogacci M.F.
        • Barbirato Dda S.
        • Amaral Cda S.
        • et al.
        No association between periodontitis, preterm birth, or intrauterine growth restriction: experimental study in Wistar rats.
        Am J Obstet Gynecol. 2016; 214: 749.e1-749.e11
        • Fogacci M.F.
        • Cardoso E.O.C.
        • Barbirato D.D.S.
        • de Carvalho D.P.
        • Sansone C.
        No association between periodontitis and preterm low birth weight: a case-control study.
        Arch Gynecol Obstet. 2018; 297: 71-76
        • Xiong X.
        • Buekens P.
        • Goldenberg R.L.
        • Offenbacher S.
        • Qian X.
        Optimal timing of periodontal disease treatment for prevention of adverse pregnancy outcomes: before or during pregnancy?.
        Am J Obstet Gynecol. 2011; 205: 111.e1-111.e6
        • Armitage G.C.
        Development of a classification system for periodontal diseases and conditions.
        Ann Periodontol. 1999; 4: 1-6
        • Armitage G.C.
        Development of a classification system for periodontal diseases and conditions.
        Northwest Dent. 2000; 79: 31-35
        • Armitage G.C.
        Diagnosis of periodontal diseases.
        J Periodontol. 2003; 74: 1237-1247
        • Armitage G.C.
        Periodontal diagnoses and classification of periodontal diseases.
        Periodontol 2000. 2004; 34: 9-21
        • Highfield J.
        Diagnosis and classification of periodontal disease.
        Aust Dent J. 2009; 54: S11-S26
        • Papapanou P.N.
        • Sanz M.
        • Buduneli N.
        • et al.
        Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions.
        J Periodontol. 2018; 89: S173-S182
        • Manau C.
        • Echeverria A.
        • Agueda A.
        • Guerrero A.
        • Echeverria J.J.
        Periodontal disease definition may determine the association between periodontitis and pregnancy outcomes.
        J Clin Periodontol. 2008; 35: 385-397
        • Vettore M.V.
        • Lamarca G.D.E.A.
        • Leao A.T.
        • Thomaz F.B.
        • Sheiham A.
        • Leal Mdo C.
        Periodontal infection and adverse pregnancy outcomes: a systematic review of epidemiological studies.
        Cad Saude Publica. 2006; 22: 2041-2053
        • Xiong X.
        • Buekens P.
        • Fraser W.D.
        • Beck J.
        • Offenbacher S.
        Periodontal disease and adverse pregnancy outcomes: a systematic review.
        BJOG. 2006; 113: 135-143
        • Hugoson A.
        Gingival inflammation and female sex hormones. A clinical investigation of pregnant women and experimental studies in dogs.
        J Periodontal Res Suppl. 1970; 5: 1-18
        • Hugoson A.
        Gingivitis in pregnant women. A longitudinal clinical study.
        Odontol Revy. 1971; 22: 65-84
        • Loe H.
        • Silness J.
        Periodontal disease in pregnancy. I. Prevalence and severity.
        Acta Odontol Scand. 1963; 21: 533-551
        • Silness J.
        • Loe H.
        Periodontal disease in pregnancy. II. Correlation between oral hygiene and perodontal condition.
        Acta Odontol Scand. 1964; 22: 121-135
        • Kornman K.S.
        • Loesche W.J.
        The subgingival microbial flora during pregnancy.
        J Periodontal Res. 1980; 15: 111-122
        • Tilakaratne A.
        • Soory M.
        • Ranasinghe A.W.
        • Corea S.M.
        • Ekanayake S.L.
        • de Silva M.
        Periodontal disease status during pregnancy and 3 months post-partum, in a rural population of Sri Lankan women.
        J Clin Periodontol. 2000; 27: 787-792
        • Hajishengallis G.
        • Darveau R.P.
        • Curtis M.A.
        The keystone-pathogen hypothesis.
        Nat Rev Microbiol. 2012; 10: 717-725
        • Agrawal A.A.
        • Kapley A.
        • Yeltiwar R.K.
        • Purohit H.J.
        Assessment of single nucleotide polymorphism at IL-1A+4845 and IL-1B+3954 as genetic susceptibility test for chronic periodontitis in Maharashtrian ethnicity.
        J Periodontol. 2006; 77: 1515-1521
        • Ari G.
        • Cherukuri S.
        • Namasivayam A.
        Epigenetics and periodontitis: a contemporary review.
        J Clin Diagn Res. 2016; 10: Ze07-Ze09
        • Grigoriadou M.E.
        • Koutayas S.O.
        • Madianos P.N.
        • Strub J.R.
        Interleukin-1 as a genetic marker for periodontitis: review of the literature.
        Quintessence Int. 2010; 41: 517-525
        • Huynh-Ba G.
        • Lang N.P.
        • Tonetti M.S.
        • Salvi G.E.
        The association of the composite IL-1 genotype with periodontitis progression and/or treatment outcomes: a systematic review.
        J Clin Periodontol. 2007; 34: 305-317
        • Gomez L.M.
        • Sammel M.D.
        • Appleby D.H.
        • et al.
        Evidence of a gene-environment interaction that predisposes to spontaneous preterm birth: a role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response.
        Am J Obstet Gynecol. 2010; 202: 386.e1-386.e6
        • Kalish R.B.
        • Vardhana S.
        • Gupta M.
        • Chasen S.T.
        • Perni S.C.
        • Witkin S.S.
        Interleukin-1 receptor antagonist gene polymorphism and multifetal pregnancy outcome.
        Am J Obstet Gynecol. 2003; 189: 911-914
        • Kayar N.A.
        • Alptekin N.O.
        • Erdal M.E.
        Interleukin-1 receptor antagonist gene polymorphism, adverse pregnancy outcome and periodontitis in Turkish women.
        Arch Oral Biol. 2015; 60: 1777-1783
        • Langmia I.M.
        • Apalasamy Y.D.
        • Omar S.Z.
        • Mohamed Z.
        Interleukin 1 receptor type 2 gene polymorphism is associated with reduced risk of preterm birth.
        J Matern Fetal Neonatal Med. 2016; 29: 3347-3350
        • Macones G.A.
        • Parry S.
        • Elkousy M.
        • Clothier B.
        • Ural S.H.
        • Strauss 3rd, J.F.
        A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of gene-environment interaction in the etiology of spontaneous preterm birth.
        Am J Obstet Gynecol. 2004; 190 (discussion 3A): 1504-1508
        • Callaghan W.M.
        • MacDorman M.F.
        • Rasmussen S.A.
        • Qin C.
        • Lackritz E.M.
        The contribution of preterm birth to infant mortality rates in the United States.
        Pediatrics. 2006; 118: 1566-1573
        • Matthews T.J.
        • MacDorman M.F.
        • Thoma M.E.
        Infant mortality statistics from the 2013 period linked birth/infant death data set.
        Natl Vital Stat Rep. 2015; 64: 1-30
        • Paige D.M.
        • Augustyn M.
        • Adih W.K.
        • Witter F.
        • Chang J.
        Bacterial vaginosis and preterm birth: a comprehensive review of the literature.
        J Nurse Midwifery. 1998; 43: 83-89
        • Azofeifa A.
        • Yeung L.F.
        • Alverson C.J.
        • Beltran-Aguilar E.
        Dental caries and periodontal disease among US pregnant women and nonpregnant women of reproductive age, National Health and Nutrition Examination Survey, 1999–2004.
        J Public Health Dent. 2016; 76: 320-329
        • Blencowe H.
        • Lee A.C.
        • Cousens S.
        • et al.
        Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010.
        Pediatr Res. 2013; 74: 17-34
        • Hovi P.
        • Andersson S.
        • Jarvenpaa A.L.
        • et al.
        Decreased bone mineral density in adults born with very low birth weight: a cohort study.
        PLoS Med. 2009; 6: e1000135
        • Konopka T.
        • Paradowska-Stolarz A.
        Periodontitis and risk of preterm birth and low birthweight—a meta-analysis.
        Ginekol Pol. 2012; 83: 446-453
        • Shanthi V.
        • Vanka A.
        • Bhambal A.
        • Saxena V.
        • Saxena S.
        • Kumar S.S.
        Association of pregnant women periodontal status to preterm and low-birth weight babies: a systematic and evidence-based review.
        Dent Res J (Isfahan). 2012; 9: 368-380
        • Higgins J.P.
        • Altman D.G.
        • Gotzsche P.C.
        • et al.
        The Cochrane Collaboration's tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Kim A.J.
        • Lo A.J.
        • Pullin D.A.
        • Thornton-Johnson D.S.
        • Karimbux N.Y.
        Scaling and root planing treatment for periodontitis to reduce preterm birth and low birth weight: a systematic review and meta-analysis of randomized controlled trials.
        J Periodontol. 2012; 83: 1508-1519
        • Uppal A.
        • Uppal S.
        • Pinto A.
        • et al.
        The effectiveness of periodontal disease treatment during pregnancy in reducing the risk of experiencing preterm birth and low birth weight: a meta-analysis.
        J Am Dent Assoc. 2010; 141: 1423-1434
        • Chambrone L.
        • Pannuti C.M.
        • Guglielmetti M.R.
        • Chambrone L.A.
        Evidence grade associating periodontitis with preterm birth and/or low birth weight: II: a systematic review of randomized trials evaluating the effects of periodontal treatment.
        J Clin Periodontol. 2011; 38: 902-914
        • Polyzos N.P.
        • Polyzos I.P.
        • Zavos A.
        • et al.
        Obstetric outcomes after treatment of periodontal disease during pregnancy: systematic review and meta-analysis.
        BMJ. 2010; 341: c7017
        • Fardini Y.
        • Chung P.
        • Dumm R.
        • Joshi N.
        • Han Y.W.
        Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection.
        Infect Immun. 2010; 78: 1789-1796
        • Cohen D.W.
        • Shapiro J.
        • Friedman L.
        • Kyle G.C.
        • Franklin S.
        A longitudinal investigation of the periodontal changes during pregnancy and fifteen months post-partum. II.
        J Periodontol. 1971; 42: 653-657
        • Gursoy M.
        • Pajukanta R.
        • Sorsa T.
        • Kononen E.
        Clinical changes in periodontium during pregnancy and post-partum.
        J Clin Periodontol. 2008; 35: 576-583
        • Hillier S.L.
        • Krohn M.A.
        • Rabe L.K.
        • Klebanoff S.J.
        • Eschenbach D.A.
        The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women.
        Clin Infect Dis. 1993; 16: S273-S281
        • Cassini M.A.
        • Pilloni A.
        • Condo S.G.
        • Vitali L.A.
        • Pasquantonio G.
        • Cerroni L.
        Periodontal bacteria in the genital tract: are they related to adverse pregnancy outcome?.
        Int J Immunopathol Pharmacol. 2013; 26: 931-939
        • Leitich H.
        • Bodner-Adler B.
        • Brunbauer M.
        • Kaider A.
        • Egarter C.
        • Husslein P.
        Bacterial vaginosis as a risk factor for preterm delivery: a meta-analysis.
        Am J Obstet Gynecol. 2003; 189: 139-147
        • Flynn C.A.
        • Helwig A.L.
        • Meurer L.N.
        Bacterial vaginosis in pregnancy and the risk of prematurity: a meta-analysis.
        J Fam Pract. 1999; 48: 885-892
        • Holst E.
        • Goffeng A.R.
        • Andersch B.
        Bacterial vaginosis and vaginal microorganisms in idiopathic premature labor and association with pregnancy outcome.
        J Clin Microbiol. 1994; 32: 176-186
        • Africa C.W.
        • Nel J.
        • Stemmet M.
        Anaerobes and bacterial vaginosis in pregnancy: virulence factors contributing to vaginal colonisation.
        Int J Environ Res Public Health. 2014; 11: 6979-7000
        • Zhou X.
        • Brown C.J.
        • Abdo Z.
        • et al.
        Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women.
        Isme j. 2007; 1: 121-133
        • Koumans E.H.
        • Sternberg M.
        • Bruce C.
        • et al.
        The prevalence of bacterial vaginosis in the United States, 2001–2004; associations with symptoms, sexual behaviors, and reproductive health.
        Sex Transm Dis. 2007; 34: 864-869
        • Costalonga M.
        • Herzberg M.C.
        The oral microbiome and the immunobiology of periodontal disease and caries.
        Immunol Lett. 2014; 162: 22-38
        • Socransky S.S.
        • Haffajee A.D.
        • Cugini M.A.
        • Smith C.
        • Kent Jr., R.L.
        Microbial complexes in subgingival plaque.
        J Clin Periodontol. 1998; 25: 134-144
        • Kumar P.S.
        • Griffen A.L.
        • Moeschberger M.L.
        • Leys E.J.
        Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis.
        J Clin Microbiol. 2005; 43: 3944-3955
        • Aagaard K.
        • Ma J.
        • Antony K.M.
        • Ganu R.
        • Petrosino J.
        • Versalovic J.
        The placenta harbors a unique microbiome.
        Sci Transl Med. 2014; 6: 237ra65
        • Prince A.L.
        • Ma J.
        • Kannan P.S.
        • et al.
        The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis.
        Am J Obstet Gynecol. 2016; 214: 627.e1-627.e16
        • Antony K.M.
        • Ma J.
        • Mitchell K.B.
        • Racusin D.A.
        • Versalovic J.
        • Aagaard K.
        The preterm placental microbiome varies in association with excess maternal gestational weight gain.
        Am J Obstet Gynecol. 2015; 212: 653.e1-653.e16
        • Doyle R.M.
        • Alber D.G.
        • Jones H.E.
        • et al.
        Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery.
        Placenta. 2014; 35: 1099-1101
        • Zheng J.
        • Xiao X.
        • Zhang Q.
        • Mao L.
        • Yu M.
        • Xu J.
        The placental microbiome varies in association with low birth weight in full-term neonates.
        Nutrients. 2015; 7: 6924-6937
        • Han Y.W.
        • Redline R.W.
        • Li M.
        • Yin L.
        • Hill G.B.
        • McCormick T.S.
        Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth.
        Infect Immun. 2004; 72: 2272-2279
        • Han Y.W.
        • Fardini Y.
        • Chen C.
        • et al.
        Term stillbirth caused by oral Fusobacterium nucleatum.
        Obstet Gynecol. 2010; 115: 442-445
        • Fardini Y.
        • Wang X.
        • Temoin S.
        • et al.
        Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity.
        Mol Microbiol. 2011; 82: 1468-1480
        • Liu H.
        • Redline R.W.
        • Han Y.W.
        Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response.
        J Immunol. 2007; 179: 2501-2508
        • Hitti J.
        • Hillier S.L.
        • Agnew K.J.
        • Krohn M.A.
        • Reisner D.P.
        • Eschenbach D.A.
        Vaginal indicators of amniotic fluid infection in preterm labor.
        Obstet Gynecol. 2001; 97: 211-219
        • Hajishengallis G.
        • Liang S.
        • Payne M.A.
        • et al.
        Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement.
        Cell Host Microbe. 2011; 10: 497-506
        • Mor G.
        • Kwon J.Y.
        Trophoblast-microbiome interaction: a new paradigm on immune regulation.
        Am J Obstet Gynecol. 2015; 213: S131-S137
        • Lin D.
        • Smith M.A.
        • Champagne C.
        • Elter J.
        • Beck J.
        • Offenbacher S.
        Porphyromonas gingivalis infection during pregnancy increases maternal tumor necrosis factor alpha, suppresses maternal interleukin-10, and enhances fetal growth restriction and resorption in mice.
        Infect Immun. 2003; 71: 5156-5162
        • Lin D.
        • Smith M.A.
        • Elter J.
        • et al.
        Porphyromonas gingivalis infection in pregnant mice is associated with placental dissemination, an increase in the placental Th1/Th2 cytokine ratio, and fetal growth restriction.
        Infect Immun. 2003; 71: 5163-5168
        • Collins J.G.
        • Smith M.A.
        • Arnold R.R.
        • Offenbacher S.
        Effects of Escherichia coli and Porphyromonas gingivalis lipopolysaccharide on pregnancy outcome in the golden hamster.
        Infect Immun. 1994; 62: 4652-4655
        • Michelin M.C.
        • Teixeira S.R.
        • Ando-Suguimoto E.S.
        • Lucas S.R.
        • Mayer M.P.
        Porphyromonas gingivalis infection at different gestation periods on fetus development and cytokines profile.
        Oral Dis. 2012; 18: 648-654
        • Liang S.
        • Ren H.
        • Guo H.
        • et al.
        Periodontal infection with Porphyromonas gingivalis induces preterm birth and lower birth weight in rats.
        Mol Oral Microbiol. 2018; 33: 312-321
        • Boggess K.A.
        • Madianos P.N.
        • Preisser J.S.
        • Moise Jr., K.J.
        • Offenbacher S.
        Chronic maternal and fetal Porphyromonas gingivalis exposure during pregnancy in rabbits.
        Am J Obstet Gynecol. 2005; 192: 554-557
        • Boggess K.A.
        • Price W.A.
        • Preisser J.S.
        • Moise Jr., K.J.
        • Offenbacher S.
        Insulin-like growth factor and interleukin-1 beta levels and subsequent fetal size in response to chronic Porphyromonas gingivalis exposure in the pregnant rabbit.
        Am J Obstet Gynecol. 2005; 193: 1219-1223
        • Almeida A.
        • Correia-da-Silva G.
        • Cepa M.
        • Bell S.C.
        • Teixeira N.A.
        Synergistic induction of apoptosis in primary rat decidual cells by INF-gamma and TNF.
        Mol Reprod Dev. 2007; 74: 371-377
        • Almeria S.
        • Araujo R.
        • Tuo W.
        • Lopez-Gatius F.
        • Dubey J.P.
        • Gasbarre L.C.
        Fetal death in cows experimentally infected with Neospora caninum at 110 days of gestation.
        Vet Parasitol. 2010; 169: 304-311
        • Ashkar A.A.
        • Croy B.A.
        Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy.
        Semin Immunol. 2001; 13: 235-241
        • Bell M.J.
        • Hallenbeck J.M.
        • Gallo V.
        Determining the fetal inflammatory response in an experimental model of intrauterine inflammation in rats.
        Pediatr Res. 2004; 56: 541-546
        • Chaouat G.
        • Ledee-Bataille N.
        • Dubanchet S.
        • Zourbas S.
        • Sandra O.
        • Martal J.
        TH1/TH2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the TH1/TH2 paradigm.
        Int Arch Allergy Immunol. 2004; 134: 93-119
        • Fujihashi K.
        • Yamamoto M.
        • Hiroi T.
        • Bamberg T.V.
        • McGhee J.R.
        • Kiyono H.
        Selected Th1 and Th2 cytokine mRNA expression by CD4(+) T cells isolated from inflamed human gingival tissues.
        Clin Exp Immunol. 1996; 103: 422-428
        • Garlet G.P.
        Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints.
        J Dent Res. 2010; 89: 1349-1363
        • Krishnan L.
        • Guilbert L.J.
        • Russell A.S.
        • Wegmann T.G.
        • Mosmann T.R.
        • Belosevic M.
        Pregnancy impairs resistance of C57BL/6 mice to Leishmania major infection and causes decreased antigen-specific IFN-gamma response and increased production of T helper 2 cytokines.
        J Immunol. 1996; 156: 644-652
        • Krishnan L.
        • Guilbert L.J.
        • Wegmann T.G.
        • Belosevic M.
        • Mosmann T.R.
        T helper 1 response against Leishmania major in pregnant C57BL/6 mice increases implantation failure and fetal resorptions. Correlation with increased IFN-gamma and TNF and reduced IL-10 production by placental cells.
        J Immunol. 1996; 156: 653-662
        • Lopez-Gatius F.
        • Almeria S.
        • Donofrio G.
        • et al.
        Protection against abortion linked to gamma interferon production in pregnant dairy cows naturally infected with Neospora caninum.
        Theriogenology. 2007; 68: 1067-1073
        • Blanc V.
        • O'Valle F.
        • Pozo E.
        • Puertas A.
        • Leon R.
        • Mesa F.
        Oral bacteria in placental tissues: increased molecular detection in pregnant periodontitis patients.
        Oral Dis. 2015; 21: 905-912
        • Borzychowski A.M.
        • Sargent I.L.
        • Redman C.W.
        Inflammation and pre-eclampsia.
        Semin Fetal Neonatal Med. 2006; 11: 309-316
        • Ramma W.
        • Ahmed A.
        Is inflammation the cause of pre-eclampsia?.
        Biochem Soc Trans. 2011; 39: 1619-1627
        • Sarween N.
        • Drayson M.T.
        • Hodson J.
        • et al.
        Humoral immunity in late-onset Pre-eclampsia and linkage with angiogenic and inflammatory markers.
        Am J Reprod Immunol. 2018; 80: e13041
        • Amarasekara R.
        • Jayasekara R.W.
        • Senanayake H.
        • Dissanayake V.H.
        Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia.
        J Obstet Gynaecol Res. 2015; 41: 662-669
        • Barak S.
        • Oettinger-Barak O.
        • Machtei E.E.
        • Sprecher H.
        • Ohel G.
        Evidence of periopathogenic microorganisms in placentas of women with preeclampsia.
        J Periodontol. 2007; 78: 670-676
        • Griffen A.L.
        • Beall C.J.
        • Campbell J.H.
        • et al.
        Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing.
        Isme J. 2012; 6: 1176-1185
        • Kumar P.S.
        • Griffen A.L.
        • Barton J.A.
        • Paster B.J.
        • Moeschberger M.L.
        • Leys E.J.
        New bacterial species associated with chronic periodontitis.
        J Dent Res. 2003; 82: 338-344
        • Katz J.
        • Chegini N.
        • Shiverick K.T.
        • Lamont R.J.
        Localization of P. gingivalis in preterm delivery placenta.
        J Dent Res. 2009; 88: 575-578
        • Vanterpool S.F.
        • Been J.V.
        • Houben M.L.
        • et al.
        Porphyromonas gingivalis within placental villous mesenchyme and umbilical cord stroma is associated with adverse pregnancy outcome.
        PLoS One. 2016; 11: e0146157
        • Steel J.H.
        • Malatos S.
        • Kennea N.
        • et al.
        Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor.
        Pediatr Res. 2005; 57: 404-411
        • Collado M.C.
        • Rautava S.
        • Aakko J.
        • Isolauri E.
        • Salminen S.
        Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid.
        Sci Rep. 2016; 6: 23129
        • Zheng J.
        • Xiao X.
        • Zhang Q.
        • et al.
        The placental microbiota is altered among subjects with gestational diabetes mellitus: a pilot study.
        Front Physiol. 2017; 8: 675
        • Onderdonk A.B.
        • Hecht J.L.
        • McElrath T.F.
        • Delaney M.L.
        • Allred E.N.
        • Leviton A.
        Colonization of second-trimester placenta parenchyma.
        Am J Obstet Gynecol. 2008; 199: 52.e1-52.e10
        • Aagaard K.M.
        Author response to comment on "the placenta harbors a unique microbiome.".
        Sci Transl Med. 2014; 6: 254lr3
        • Wassenaar T.M.
        • Panigrahi P.
        Is a foetus developing in a sterile environment?.
        Lett Appl Microbiol. 2014; 59: 572-579
        • Walker R.W.
        • Clemente J.C.
        • Peter I.
        • Loos R.J.F.
        The prenatal gut microbiome: are we colonized with bacteria in utero?.
        Pediatr Obes. 2017; 12: 3-17
        • Pelzer E.
        • Gomez-Arango L.F.
        • Barrett H.L.
        • Nitert M.D.
        Review: maternal health and the placental microbiome.
        Placenta. 2017; 54: 30-37
        • Willyard C.
        Could baby's first bacteria take root before birth?.
        Nature. 2018; 553: 264-266
        • Hornef M.
        • Penders J.
        Does a prenatal bacterial microbiota exist?.
        Mucosal Immunol. 2017; 10: 598-601
        • Perez-Munoz M.E.
        • Arrieta M.C.
        • Ramer-Tait A.E.
        • Walter J.
        A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome.
        Microbiome. 2017; 5: 48
        • Gomez-Arango L.F.
        • Barrett H.L.
        • McIntyre H.D.
        • Callaway L.K.
        • Morrison M.
        • Nitert M.D.
        Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women.
        Sci Rep. 2017; 7: 2860
        • Kliman H.J.
        Comment on "the placenta harbors a unique microbiome.".
        Sci Transl Med. 2014; 6: 254le4
        • Lauder A.P.
        • Roche A.M.
        • Sherrill-Mix S.
        • et al.
        Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota.
        Microbiome. 2016; 4: 29
        • Leon L.J.
        • Doyle R.
        • Diez-Benavente E.
        • et al.
        Enrichment of clinically relevant organisms in spontaneous preterm delivered placenta and reagent contamination across all clinical groups in a large UK pregnancy cohort.
        Appl Environ Microbiol. 2018; 84
        • Stout M.J.
        • Conlon B.
        • Landeau M.
        • et al.
        Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations.
        Am J Obstet Gynecol. 2013; 208: 226.e1-226.e7
        • Parnell L.A.
        • Briggs C.M.
        • Cao B.
        • Delannoy-Bruno O.
        • Schrieffer A.E.
        • Mysorekar I.U.
        Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles.
        Sci Rep. 2017; 7: 11200
        • Manichanh C.
        • Rigottier-Gois L.
        • Bonnaud E.
        • et al.
        Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach.
        Gut. 2006; 55: 205-211
        • Lepage P.
        • Hasler R.
        • Spehlmann M.E.
        • et al.
        Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis.
        Gastroenterology. 2011; 141: 227-236
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • Boedeker E.C.
        • Harpaz N.
        • Pace N.R.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci USA. 2007; 104: 13780-13785
        • Jeffery I.B.
        • O'Toole P.W.
        • Ohman L.
        • et al.
        An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota.
        Gut. 2012; 61: 997-1006
        • Kirst M.E.
        • Li E.C.
        • Alfant B.
        • et al.
        Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis.
        Appl Environ Microbiol. 2015; 81: 783-793
        • Jorth P.
        • Turner K.H.
        • Gumus P.
        • Nizam N.
        • Buduneli N.
        • Whiteley M.
        Metatranscriptomics of the human oral microbiome during health and disease.
        MBio. 2014; 5: e01012-e01014
        • Liu B.
        • Faller L.L.
        • Klitgord N.
        • et al.
        Deep sequencing of the oral microbiome reveals signatures of periodontal disease.
        PLoS One. 2012; 7: e37919
        • Institute of Medicine Committee on Understanding Premature Birth and Assuring Healthy Outcomes
        The National Academies Collection: reports funded by National Institutes of Health.
        in: Behrman R.E. Butler A.S. Preterm birth: causes, consequences, and prevention. National Academies Press, National Academy of Sciences, Washington (DC)2007
        • AlJehani Y.A.
        Risk factors of periodontal disease: review of the literature.
        Int J Dent. 2014; 2014182513
        • Eke P.I.
        • Wei L.
        • Thornton-Evans G.O.
        • et al.
        Risk indicators for periodontitis in US adults: NHANES 2009 to 2012.
        J Periodontol. 2016; 87: 1174-1185
        • Saini G.K.
        • Gupta N.D.
        • Prabhat K.C.
        Drug addiction and periodontal diseases.
        J Indian Soc Periodontol. 2013; 17: 587-591
        • Genco R.J.
        • Borgnakke W.S.
        Risk factors for periodontal disease.
        Periodontol 2000. 2013; 62: 59-94
        • Kumar P.S.
        From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease.
        J Physiol. 2017; 595: 465-476
        • Haffajee A.D.
        • Socransky S.S.
        Microbial etiological agents of destructive periodontal diseases.
        Periodontol 2000. 1994; 5: 78-111
        • Haffajee A.D.
        • Socransky S.S.
        • Patel M.R.
        • Song X.
        Microbial complexes in supragingival plaque.
        Oral Microbiol Immunol. 2008; 23: 196-205
        • Mdala I.
        • Olsen I.
        • Haffajee A.D.
        • Socransky S.S.
        • Thoresen M.
        • de Blasio B.F.
        Comparing clinical attachment level and pocket depth for predicting periodontal disease progression in healthy sites of patients with chronic periodontitis using multi-state Markov models.
        J Clin Periodontol. 2014; 41: 837-845
        • Ximenez-Fyvie L.A.
        • Haffajee A.D.
        • Socransky S.S.
        Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis.
        J Clin Periodontol. 2000; 27: 648-657
        • Eke P.I.
        • Thornton-Evans G.O.
        • Wei L.
        • Borgnakke W.S.
        • Dye B.A.
        Accuracy of NHANES periodontal examination protocols.
        J Dent Res. 2010; 89: 1208-1213