Advertisement

The effect of parity on longitudinal maternal hemodynamics

Published:April 02, 2019DOI:https://doi.org/10.1016/j.ajog.2019.03.027

      Background

      Parous women have a lower risk for pregnancy complications, such as preeclampsia or delivery of small-for-gestational-age neonates. However, parous women are a heterogeneous group of patients because they contain a low-risk cohort with previously uncomplicated pregnancies and a high-risk cohort with previous pregnancies complicated by preeclampsia and/or small for gestational age. Previous studies examining the effect of parity on maternal hemodynamics, including cardiac output and peripheral vascular resistance, did not distinguish between parous women with and without a history of preeclampsia or small for gestational age and reported contradictory results.

      Objective

      The objective of the study was to compare maternal hemodynamics in nulliparous women and in parous women with and without previous preeclampsia and/or small for gestational age.

      Study Design

      This was a prospective, longitudinal study of maternal hemodynamics, assessed by a bioreactance method, measured at 11+0 to 13+6, 19+0 to 24+0, 30+0 to 34+0, and 35+0 to 37+0 weeks’ gestation in 3 groups of women. Group 1 was composed of parous women without a history of preeclampsia and/or small for gestational age (n = 632), group 2 was composed of nulliparous women (n = 829), and group 3 was composed of parous women with a history of preeclampsia and/or small for gestational age (n = 113). A multilevel linear mixed-effects model was performed to compare the repeated measures of hemodynamic variables controlling for maternal characteristics, medical history, and development of preeclampsia or small for gestational age in the current pregnancy.

      Results

      In groups 1 and 2, cardiac output increased with gestational age to a peak at 32 weeks and peripheral vascular resistance showed a reversed pattern with its nadir at 32 weeks; in group 1, compared with group 2, there was better cardiac adaptation, reflected in higher cardiac output and lower peripheral vascular resistance. In group 3 there was a hyperdynamic profile of higher cardiac output and lower peripheral vascular resistance at the first trimester followed by an earlier sharp decline of cardiac output and increase of peripheral vascular resistance from midgestation. The incidence of preeclampsia and small for gestational age was highest in group 3 and lowest in group 1.

      Conclusion

      There are parity-specific differences in maternal cardiac adaptation in pregnancy.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Duckitt K.
        • Harrington D.
        Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies.
        BMJ. 2005; 330: 565
        • Kozuki N.
        • Lee A.C.
        • Silveira M.F.
        • et al.
        The associations of parity and maternal age with small-for-gestational-age, preterm, and neonatal and infant mortality: a meta-analysis.
        BMC Public Health. 2013; 13: S2
        • Hernandez-Diaz S.
        • Toh S.
        • Cnattingius S.
        Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study.
        BMJ. 2009; 338: b2255
        • Luo Z.C.
        • An N.
        • Xu H.R.
        • Larante A.
        • Audibert F.
        • Fraser W.D.
        The effects and mechanisms of primiparity on the risk of pre-eclampsia: a systematic review.
        Paediatr Perinat Epidemiol. 2007; 21: 36-45
        • Ahmed R.
        • Dunford J.
        • Mehran R.
        • Robson S.
        • Kunadian V.
        Pre-eclampsia and future cardiovascular risk among women: a review.
        J Am Coll Cardiol. 2014; 63: 1815-1822
        • Bokslag A.
        • Teunissen P.W.
        • Franssen C.
        • et al.
        Effect of early-onset preeclampsia on cardiovascular risk in the fifth decade of life.
        Am J Obstet Gynecol. 2017; 216: 523.e1-523.e7
        • Cain M.A.
        • Salemi J.L.
        • Tanner J.P.
        • Kirby R.S.
        • Salihu H.M.
        • Louis J.M.
        Pregnancy as a window to future health: maternal placental syndromes and short-term cardiovascular outcomes.
        Am J Obstet Gynecol. 2016; 215: 484.e1-484.e14
        • McDonald S.D.
        • Malinowski A.
        • Zhou Q.
        • Yusuf S.
        • Devereaux P.J.
        Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses.
        Am Heart J. 2008; 156: 918-930
        • Hermes W.
        • Franx A.
        • van Pampus M.G.
        • et al.
        Cardiovascular risk factors in women who had hypertensive disorders late in pregnancy: a cohort study.
        Am J Obstet Gynecol. 2013; 208: 474.e1-474.e8
        • Tooher J.
        • Thornton C.
        • Makris A.
        • et al.
        Hypertension in pregnancy and long-term cardiovascular mortality: a retrospective cohort study.
        Am J Obstet Gynecol. 2016; 214: 722.e1-722.e6
        • Zoet G.A.
        • Koster M.P.
        • Velthuis B.K.
        • et al.
        Determinants of future cardiovascular health in women with a history of preeclampsia.
        Maturitas. 2015; 82: 153-161
        • McDonald E.G.
        • Dayan N.
        • Pelletier R.
        • Eisenberg M.J.
        • Pilote L.
        Premature cardiovascular disease following a history of hypertensive disorder of pregnancy.
        Int J Cardiol. 2016; 219: 9-13
        • Mahendru A.A.
        • Everett T.R.
        • Wilkinson I.B.
        • Lees C.C.
        • McEniery C.M.
        A longitudinal study of maternal cardiovascular function from preconception to the postpartum period.
        J Hypertens. 2014; 32: 849-856
        • Duvekot J.J.
        • Peeters L.L.
        Maternal cardiovascular hemodynamic adaptation to pregnancy.
        Obstet Gynecol Surv. 1994; 49: S1-S14
        • Duvekot J.J.
        • Cheriex E.C.
        • Pieters F.A.
        • Menheere P.P.
        • Peeters L.H.
        Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone.
        Am J Obstet Gynecol. 1993; 169: 1382-1392
        • Stott D.
        • Papastefanou I.
        • Paraschiv D.
        • Clark K.
        • Kametas N.A.
        Longitudinal maternal hemodynamics in pregnancies affected by fetal growth restriction.
        Ultrasound Obstet Gynecol. 2017; 49: 761-768
        • Bamfo J.E.
        • Kametas N.A.
        • Chambers J.B.
        • Nicolaides K.H.
        Maternal cardiac function in fetal growth-restricted and non-growth-restricted small-for-gestational age pregnancies.
        Ultrasound Obstet Gynecol. 2007; 29: 51-57
        • Tay J.
        • Foo L.
        • Masini G.
        • et al.
        Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: insights from a prospective study.
        Am J Obstet Gynecol. 2018; 218: 517 e1-517 e12
        • Melchiorre K.
        • Sutherland G.R.
        • Liberati M.
        • Thilaganathan B.
        Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction.
        Hypertension. 2012; 60: 437-443
        • De Paco C.
        • Kametas N.
        • Rencoret G.
        • Strobl I.
        • Nicolaides K.H.
        Maternal cardiac output between 11 and 13 weeks of gestation in the prediction of preeclampsia and small for gestational age.
        Obstet Gynecol. 2008; 111: 292-300
        • Valensise H.
        • Vasapollo B.
        • Gagliardi G.
        • Novelli G.P.
        Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease.
        Hypertension. 2008; 52: 873-880
        • Roberts L.A.
        • Ling H.Z.
        • Poon L.C.
        • Nicolaides K.H.
        • Kametas N.A.
        Maternal hemodynamics, fetal biometry and Doppler indices in pregnancies followed up for suspected fetal growth restriction.
        Ultrasound Obstet Gynecol. 2018; 52: 507-514
        • Bosio P.M.
        • McKenna P.J.
        • Conroy R.
        • O'Herlihy C.
        Maternal central hemodynamics in hypertensive disorders of pregnancy.
        Obstet Gynecol. 1999; 94: 978-984
        • Easterling T.R.
        • Benedetti T.J.
        • Schmucker B.C.
        • Millard S.P.
        Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study.
        Obstet Gynecol. 1990; 76: 1061-1069
        • Ferrazzi E.
        • Stampalija T.
        • Monasta L.
        • Di Martino D.
        • Vonck S.
        • Gyselaers W.
        Maternal hemodynamics: a method to classify hypertensive disorders of pregnancy.
        Am J Obstet Gynecol. 2018; 218: 124 e1-e11
        • McLaughlin K.
        • Zhang J.
        • Lye S.J.
        • Parker J.D.
        • Kingdom J.C.
        Phenotypes of pregnant women who subsequently develop hypertension in pregnancy.
        J Am Heart Assoc. 2018; 7
        • Turan O.M.
        • De Paco C.
        • Kametas N.
        • Khaw A.
        • Nicolaides K.H.
        Effect of parity on maternal cardiac function during the first trimester of pregnancy.
        Ultrasound Obstet Gynecol. 2008; 32: 849-854
        • Hart M.V.
        • Morton M.J.
        • Hosenpud J.D.
        • Metcalfe J.
        Aortic function during normal human pregnancy.
        Am J Obstet Gynecol. 1986; 154: 887-891
        • Clapp 3rd, J.F.
        • Capeless E.
        Cardiovascular function before, during, and after the first and subsequent pregnancies.
        Am J Cardiol. 1997; 80: 1469-1473
        • van Oppen A.C.
        • van der Tweel I.
        • Alsbach G.P.
        • Heethaar R.M.
        • Bruinse H.W.
        A longitudinal study of maternal hemodynamics during normal pregnancy.
        Obstet Gynecol. 1996; 88: 40-46
        • O'Gorman N.
        • Wright D.
        • Poon L.C.
        • et al.
        Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation.
        Ultrasound Obstet Gynecol. 2017; 49: 751-755
        • Rolnik D.L.
        • Wright D.
        • Poon L.C.
        • et al.
        Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia.
        N Engl J Med. 2017; 377: 613-622
        • Keren H.
        • Burkhoff D.
        • Squara P.
        Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance.
        Am J Physiol Heart Circ Physiol. 2007; 293: H583-H589
        • Stott D.
        • Bolten M.
        • Salman M.
        • Paraschiv D.
        • Clark K.
        • Kametas N.A.
        Maternal demographics and hemodynamics for the prediction of fetal growth restriction at booking, in pregnancies at high risk for placental insufficiency.
        Acta Obstet Gynecol Scand. 2016; 95: 329-338
        • Vinayagam D.
        • Patey O.
        • Thilaganathan B.
        • Khalil A.
        Cardiac output assessment in pregnancy: comparison of two automated monitors with echocardiography.
        Ultrasound Obstet Gynecol. 2017; 49: 32-38
        • Brown M.A.
        • Lindheimer M.D.
        • de Swiet M.
        • Van Assche A.
        • Moutquin J.M.
        The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP).
        Hypertens Pregnancy. 2001; 20 (IX–XIV)
        • Nicolaides K.H.
        • Wright D.
        • Syngelaki A.
        • Wright A.
        • Akolekar R.
        Fetal Medicine Foundation fetal and neonatal population weight charts.
        Ultrasound Obstet Gynecol. 2018; 52: 44-51
        • Moll W.
        [Physiological cardiovascular adaptation in pregnancy—its significance for cardiac diseases].
        Z Kardiol. 2001; 90: 2-9
        • Lumbers E.R.
        • Pringle K.G.
        Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy.
        Am J Physiol Regul Integr Comp Physiol. 2014; 306: R91-R101
        • Bamfo J.E.
        • Kametas N.A.
        • Turan O.
        • Khaw A.
        • Nicolaides K.H.
        Maternal cardiac function in fetal growth restriction.
        BJOG. 2006; 113: 784-791
        • Bamfo J.E.
        • Kametas N.A.
        • Chambers J.B.
        • Nicolaides K.H.
        Maternal cardiac function in normotensive and pre-eclamptic intrauterine growth restriction.
        Ultrasound Obstet Gynecol. 2008; 32: 682-686
        • Duvekot J.J.
        • Cheriex E.C.
        • Pieters F.A.
        • Peeters L.L.
        Severely impaired fetal growth is preceded by maternal hemodynamic maladaptation in very early pregnancy.
        Acta Obstet Gynecol Scand. 1995; 74: 693-697
        • Bamfo J.E.
        • Kametas N.A.
        • Nicolaides K.H.
        • Chambers J.B.
        Maternal left ventricular diastolic and systolic long-axis function during normal pregnancy.
        Eur J Echocardiogr. 2007; 8: 360-368
        • Kametas N.A.
        • McAuliffe F.
        • Hancock J.
        • Chambers J.
        • Nicolaides K.H.
        Maternal left ventricular mass and diastolic function during pregnancy.
        Ultrasound Obstet Gynecol. 2001; 18: 460-466
        • Melchiorre K.
        • Sharma R.
        • Thilaganathan B.
        Cardiac structure and function in normal pregnancy.
        Curr Opin Obstet Gynecol. 2012; 24: 413-421
        • Melchiorre K.
        • Sutherland G.R.
        • Liberati M.
        • Thilaganathan B.
        Preeclampsia is associated with persistent postpartum cardiovascular impairment.
        Hypertension. 2011; 58: 709-715
        • Meah V.L.
        • Cockcroft J.R.
        • Backx K.
        • Shave R.
        • Stohr E.J.
        Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses.
        Heart. 2016; 102: 518-526
        • Morris E.A.
        • Hale S.A.
        • Badger G.J.
        • Magness R.R.
        • Bernstein I.M.
        Pregnancy induces persistent changes in vascular compliance in primiparous women.
        Am J Obstet Gynecol. 2015; 212: 633.e1-633.e6
        • Arbab-Zadeh A.
        • Perhonen M.
        • Howden E.
        • et al.
        Cardiac remodeling in response to 1 year of intensive endurance training.
        Circulation. 2014; 130: 2152-2161
        • Calderon Montero F.J.
        • Benito Peinado P.J.
        • Di Salvo V.
        • Pigozzi F.
        • Maffulli N.
        Cardiac adaptation to training and decreased training loads in endurance athletes: a systematic review.
        Br Med Bull. 2007; 84: 25-35
        • Pedlar C.R.
        • Brown M.G.
        • Shave R.E.
        • et al.
        Cardiovascular response to prescribed detraining among recreational athletes.
        J Appl Physiol (1985). 2018; 124: 813-820
        • Melchiorre K.
        • Sutherland G.R.
        • Watt-Coote I.
        • Liberati M.
        • Thilaganathan B.
        Severe myocardial impairment and chamber dysfunction in preterm preeclampsia.
        Hypertens Pregnancy. 2012; 31: 454-471
        • Evans C.S.
        • Gooch L.
        • Flotta D.
        • et al.
        Cardiovascular system during the postpartum state in women with a history of preeclampsia.
        Hypertension. 2011; 58: 57-62
        • Ghossein-Doha C.
        • Peeters L.
        • van Heijster S.
        • et al.
        Hypertension after preeclampsia is preceded by changes in cardiac structure and function.
        Hypertension. 2013; 62: 382-390
        • Messerli F.H.
        • Christie B.
        • DeCarvalho J.G.
        • et al.
        Obesity and essential hypertension. Hemodynamics, intravascular volume, sodium excretion, and plasma renin activity.
        Arch Intern Med. 1981; 141: 81-85
        • Brown C.D.
        • Higgins M.
        • Donato K.A.
        • et al.
        Body mass index and the prevalence of hypertension and dyslipidemia.
        Obes Res. 2000; 8: 605-619
        • Schutten M.T.
        • Houben A.J.
        • de Leeuw P.W.
        • Stehouwer C.D.
        The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension.
        Physiology (Bethesda). 2017; 32: 197-209
        • Guyton A.C.
        Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension.
        Am J Hypertens. 1989; 2: 575-585
        • Campbell D.M.
        • MacGillivray I.
        Comparison of maternal response in first and second pregnancies in relation to baby weight.
        J Obstet Gynaecol Br Commonw. 1972; 79: 684-693
        • Hytten F.
        Blood volume changes in normal pregnancy.
        Clin Haematol. 1985; 14: 601-612
        • Rurangirwa A.A.
        • Gaillard R.
        • Steegers E.A.
        • Hofman A.
        • Jaddoe V.W.
        Hemodynamic adaptations in different trimesters among nulliparous and multiparous pregnant women; the Generation R study.
        Am J Hypertens. 2012; 25: 892-899
        • Strevens H.
        • Wide-Swensson D.
        • Ingemarsson I.
        Blood pressure during pregnancy in a Swedish population; impact of parity.
        Acta Obstet Gynecol Scand. 2001; 80: 824-829
        • Christianson R.E.
        Studies on blood pressure during pregnancy. I. Influence of parity and age.
        Am J Obstet Gynecol. 1976; 125: 509-513
        • Ayala D.E.
        • Hermida R.C.
        Influence of parity and age on ambulatory monitored blood pressure during pregnancy.
        Hypertension. 2001; 38: 753-758
        • Ness R.B.
        • Schotland H.M.
        • Flegal K.M.
        • Shofer F.S.
        Reproductive history and coronary heart disease risk in women.
        Epidemiol Rev. 1994; 16: 298-314
        • Davis M.
        • Duvernoy C.
        Peripartum cardiomyopathy: current knowledge and future directions.
        Womens Health (Lond). 2015; 11: 565-573