Advertisement

Circulating microparticle proteins obtained in the late first trimester predict spontaneous preterm birth at less than 35 weeks’ gestation: a panel validation with specific characterization by parity

Published:January 25, 2019DOI:https://doi.org/10.1016/j.ajog.2019.01.220

      Background

      We have previously shown that protein biomarkers associated with circulating microparticles proteins (CMPs) obtained at the end of the first trimester may detect physiologic changes in maternal–fetal interaction such that the risk of spontaneous preterm delivery ≤35 weeks can be stratified.

      Objectives

      We present here a study extension and validation of the CMP protein multiplex concept using a larger sample set from a multicenter population that allows for model derivation in a training set and characterization in a separate testing set.

      Materials and Methods

      Ethylenediaminetetraacetic acid (EDTA) plasma was obtained from 3 established biobanks (Seattle, Boston, and Pittsburgh). Samples were from patients at a median of 10–12 weeks’ gestation, and the CMPs were isolated via size-exclusion chromatography followed by protein identification via targeted protein analysis using liquid chromatography–multiple reaction monitoring-mass (LC-MRM) spectrometry. A total of 87 women delivered at ≤35 weeks, and 174 women who delivered at term were matched by maternal age (±2 years) and gestational age at sample draw (±2 weeks). From our prior work, the CMP protein multiplex comprising F13A, FBLN1, IC1, ITIH2, and LCAT was selected for validation.

      Results

      For delivery at ≤35 weeks, the receiver operating characteristic (ROC) curve for a panel of CMP proteins (F13A, FBLN1, IC1, ITIH2, and LCAT) revealed an associated area under the ROC curve (AUC) of 0.74 (95% CI, 0.63–0.81). A separate panel of markers (IC1, LCAT, TRFE, and ITIH4), which stratified risk among mothers with a parity of 0, showed an AUC of 0.77 (95% CI, 0.61–0.90).

      Conclusion

      We have identified a set of CMP proteins that provide, at 10–12 weeks gestation, a clinically useful AUC in an independent test population. Furthermore, we determined that parity is pertinent to the diagnostic testing performance of the biomarkers for risk stratification.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McElrath T.F.
        • Hecht J.L.
        • Dammann O.
        • et al.
        Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification.
        Am J Epidemiol. 2008; 168: 980-989
        • Arias F.
        • Rodriquez L.
        • Rayne S.C.
        • Kraus F.T.
        Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes.
        Am J Obstet Gynecol. 1993; 168: 585-591
        • Redman C.W.
        • Sargent I.L.
        Latest advances in understanding preeclampsia.
        Science. 2005; 308: 1592-1594
        • Kim Y.M.
        • Bujold E.
        • Chaiworapongsa T.
        • et al.
        Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes.
        Am J Obstet Gynecol. 2003; 189: 1063-1069
        • Pavlicev M.
        • Norwitz E.R.
        Human parturition: nothing more than a delayed menstruation.
        Reprod Sci. 2018; 25: 166-173
        • Colombo M.
        • Raposo G.
        • Théry C.
        Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.
        Annu Rev Cell Dev Biol. 2014; 30: 255-289
        • Tannetta D.
        • Masliukaite I.
        • Vatish M.
        • Redman C.
        • Sargent I.
        Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia.
        J Reprod Immunol. 2017; 119: 98-106
        • Kalra H.
        • Drummen G.P.C.
        • Mathivanan S.
        Focus on extracellular vesicles: introducing the next small big thing.
        Int J Mol Sci. 2016; 17: 170
        • Choi D.S.
        • Kim D.K.
        • Kim Y.K.
        • Gho Y.S.
        Proteomics of extracellular vesicles: exosomes and ectosomes.
        Mass Spect Rev. 2015; 34: 474-490
        • Raposo G.
        • Stoorvogel W.
        Extracellular vesicles: exosomes, microvesicles, and friends.
        J Cell Biol. 2013; 200: 373-383
        • Deatheragea B.L.
        • Cooksona B.T.
        Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.
        Infect Immun. 2012; 80: 1948-1957
        • Cantonwine D.E.
        • Zhang Z.
        • Rosenblatt K.
        • et al.
        Evaluation of proteomic biomarkers associated with circulating microparticles as an effective means to stratify the risk of spontaneous preterm birth.
        Am J Obstet Gynecol. 2016; 214: 631.e1-631.e11
        • Ezrin A.M.
        • Brohman B.
        • Willmot J.
        • et al.
        Circulating serum-derived microparticles provide novel proteomic biomarkers of spontaneous preterm birth.
        Am J Perinatol. 2015; 32: 605-614
        • Fawcett T.
        An introduction to ROC analysis.
        Pattern Recognit Lett. 2006; 27: 861-874
        • Robin X.
        • Turck N.
        • Hainard A.
        • et al.
        pROC: an open source package for R and S+ to analyze and compare ROC curves.
        BMC Bioinformatics. 2011; 12: 77
        • Xie Y.
        • Pan W.
        • Khodursky A.B.
        A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data.
        Bioinformatics. 2005; 21: 4280-4288
        • Team R.C.
        R: A language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2016
        • Mercer B.M.
        • Goldenberg R.L.
        • Moawad A.H.
        • et al.
        The Preterm Prediction Study: effect of gestational age and cause of preterm birth on subsequent obstetric outcome.
        Am J Obstet Gynecol. 1999; 181: 1216-1221
        • Iams J.D.
        • Goldenberg R.L.
        • Mercer B.M.
        • et al.
        The Preterm Prediction Study: recurrence risk of spontaneous preterm birth.
        Am J Obstet Gynecol. 1998; 178: 1035-1040
        • Lykke J.A.
        • Paidas M.J.
        • Langhoff-Roos J.
        Recurring complications in second pregnancy.
        Obstet Gynecol. 2009; 113: 1217-1224
        • Kristensen J.
        • Langhoff-Roos J.
        • Kristensen F.B.
        Implications of idiopathic preterm delivery for previous and subsequent pregnancies.
        Obstet Gynecol. 1995; 86: 800-804
        • Laughon S.K.
        • Albert P.S.
        • Leishear K.
        • Mendola P.
        The NICHD Consecutive Pregnancies Study: recurrent preterm delivery by subtype.
        Am J Obstet Gynecol. 2014; 210: 131.e1-131.e8
      1. Gene: F13A1 (ENSG00000124491) - Summary - Homo sapiens - Ensembl genome browser 91. Available at: http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000124491;r=6:6144085-6321013. Accessed February 19, 2019.

        • Dardik R.
        • Loscalzo J.
        • Inbal A.
        Factor XIII (FXIII) and angiogenesis.
        J Thromb Haemost. 2006; 4: 19-25
        • Koseki-Kuno S.
        • Yamakawa M.
        • Dickneite G.
        • Ichinose A.
        Factor XIII A subunit-deficient mice developed severe uterine bleeding events and subsequent spontaneous miscarriages.
        Blood. 2003; 102: 4410-4412
        • Karimi M.
        • Bereczky Z.
        • Cohan N.
        • Muszbek L.
        Factor XIII deficiency.
        Semin Thromb Hemost. 2009; 35: 426-438
        • Kaveney A.D.
        • Philipp C.S.
        Mild factor XIII deficiency and concurrent hypofibrinogenemia: effect of pregnancy.
        Blood Coagul Fibrinolysis. 2016; 27: 457-460
        • Ariens R.A.S.
        Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms.
        Blood. 2002; 100: 743-754
        • Lorand L.
        Factor XIII: structure, activation, and interactions with fibrinogen and fibrin.
        Ann N Y Acad Sci. 2001; 936: 291-311
        • Asahina T.
        • Kobayashi T.
        • Okada Y.
        • Goto J.
        • Terao T.
        Maternal blood coagulation factor XIII is associated with the development of cytotrophoblastic shell.
        Placenta. 2000; 21: 388-393
        • de Maat M.P.M.
        • Jansen M.W.J.C.
        • Hille E.T.M.
        • et al.
        Preeclampsia and its interaction with common variants in thrombophilia genes.
        J Thromb Haemost. 2004; 2: 1588-1593
        • C.W.R
        • I.L. S
        Chaiworapongsa.
        Science. 2005; 308: 1592-1594
        • Anwar R.
        • Gallivan L.
        • Edmonds S.D.
        • Markham A.F.
        Genotype/phenotype correlations for coagulation factor XIII: specific normal polymorphisms are associated with high or low factor XIII specific activity.
        Blood. 1999; 93: 897-905
      2. UniProtKB - P35555 (FBN1_HUMAN). Available at: https://www.uniprot.org/uniprot/P35555. Accessed February 19, 2019.

        • Singh U.
        • Sun T.
        • Larsson T.
        • Elliott R.W.
        • Kostka G.
        • Fundele R.H.
        Expression and functional analysis of fibulin-1 (Fbln1) during normal and abnormal placental development of the mouse.
        Placenta. 2006; 27: 1014-1021
        • Cho H.
        • Okada H.
        • Tsuzuki T.
        • Nishigaki A.
        • Yasuda K.
        • Kanzaki H.
        Progestin-induced heart and neural crest derivatives expressed transcript 2 is associated with fibulin-1 expression in human endometrial stromal cells.
        Fertil Steril. 2013; 99: 248-255
        • Prada A.E.
        • Zahedi K.
        • Davis A.E.
        Regulation of C1 inhibitor synthesis.
        Immunobiology. 1998; 199: 377-388
        • Regal J.F.
        • Gilbert J.S.
        • Burwick R.M.
        The complement system and adverse pregnancy outcomes.
        Mol Immunol. 2015; 67: 56-70
        • Girardi G.
        Complement activation, a threat to pregnancy.
        Semin Immunopathol. 2017; 1–9
        • Gompels M.M.
        • Lock R.J.
        • Abinun M.
        • et al.
        C1 inhibitor deficiency: consensus document.
        Clin Exp Immunol. 2005; 139: 379-394
        • Soto E.
        • Romero R.
        • Richani K.
        • Espinoza J.
        • et al.
        Anaphylatoxins in preterm and term labor.
        J Perinat Med. 2005; 33: 306-313
        • McElroy J.J.
        • Gutman C.E.
        • Shaffer C.M.
        • et al.
        Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth.
        Hum Genet. 2013; 132: 935-942
        • Nowicki S.
        • Izban M.G.
        • Pawelczyk E.
        • et al.
        Preterm labor: CD55 in maternal blood leukocytes.
        Am J Reprod Immunol. 2009; 61: 360-367
        • Pacheco L.D.
        • Hankins G.D.
        • Costantine M.M.
        • et al.
        The role of human decay-accelerating factor in the pathogenesis of preterm labor.
        Am J Perinatol. 2011; 28: 565-570
        • Derzsy Z.
        • Prohászka Z.
        • Rigó J.
        • Füst G.
        • Molvarec A.
        Activation of the complement system in normal pregnancy and preeclampsia.
        Mol Immunol. 2010; 47: 1500-1506
        • Lynch A.M.
        • Wagner B.D.
        • Deterding R.R.
        • et al.
        The relationship of circulating proteins in early pregnancy with preterm birth.
        Am J Obstet Gynecol. 2016; 214: 517.e1-517.e8
        • Huang L.
        • Yoneda M.
        • Kimata K.
        A serum-derived hyaluronan-associated protein (SHAP) is the heavy chain of the inter α-trypsin inhibitor.
        J Biol Chem. 1993; 268: 26725-26730
        • Ashworth M.D.
        • Ross J.W.
        • Stein D.
        • White F.
        • Geisert R.D.
        Endometrial gene expression of acute phase extracellular matrix components following estrogen disruption of pregnancy in pigs.
        Anim Reprod Sci. 2010; 122: 215-221
        • Geisert R.D.
        • Ashworth M.D.
        • Malayer J.R.
        Expression of inter-α-trypsin inhibitor heavy chains in endometrium of cyclic and pregnant gilts.
        Reproduction. 2003; 126: 621-627
        • Glukhova A.
        • Hinkovska-Galcheva V.
        • Kelly R.
        • Abe A.
        • Shayman J.A.
        • Tesmer J.J.G.
        Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase.
        Nat Commun. 2015; 6: 6250
        • Wallentin L.
        • Fahraeus L.
        Cholesterol esterification rate and its relation to lipoprotein levels in plasma in normal human pregnancy.
        J Lab Clin Med. 1986; 107: 216-220
        • Steffen K.M.
        • Cooper M.E.
        • Shi M.
        • et al.
        Maternal and fetal variation in genes of cholesterol metabolism is associated with preterm delivery.
        J Perinatol. 2007; 27: 672-680
        • Gkouvatsos K.
        • Papanikolaou G.
        • Pantopoulos K.
        Regulation of iron transport and the role of transferrin.
        Biochim Biophys Acta. 2012; 1820: 188-202
        • Morris Buus R.
        • Boockfor F.R.
        Transferrin expression by placental trophoblastic cells.
        Placenta. 2004; 25: 45-52
        • Grapp M.
        • Wrede A.
        • Schweizer M.
        • et al.
        Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma.
        Nat Commun. 2013; 4: 2123
      3. Gene: ITIH4 (ENSG00000055955) - Summary - Homo sapiens - Ensembl genome browser 91. Available at: http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000055955;r=3:52812975-52831479. Accessed February 19, 2019.

        • Kim M.-S.
        • Gu B.-H.
        • Song S.
        • Choi B.-C.
        • Cha D.-H.
        • Baek K.-H.
        ITI-H4, as a biomarker in the serum of recurrent pregnancy loss (RPL) patients.
        Mol Biosyst. 2011; 7: 1430-1440
        • Wen Q.
        • Liu L.Y.
        • Yang T.
        • et al.
        Peptidomic identification of serum peptides diagnosing preeclampsia.
        PLoS One. 2013; 8: e65571
        • Tan Z.
        • Hu Z.
        • Cai E.Y.
        • et al.
        Serological targeted analysis of an ITIH4 peptide isoform: a preterm birth biomarker and its associated SNP implications.
        J Genet Genomics. 2015; 42: 507-510
        • Romero R.
        • Dey S.K.
        • Fisher S.J.
        Preterm labor: one syndrome, many causes.
        Science. 2014; 345: 760-765
        • Chaiworapongsa T.
        • Romero R.
        • Tarca A.
        • et al.
        A subset of patients destined to develop spontaneous preterm labor has an abnormal angiogenic/anti-angiogenic profile in maternal plasma: evidence in support of pathophysiologic heterogeneity of preterm labor derived from a longitudinal study.
        J Matern Neonatal Med. 2009; 22: 1122-1139
        • Nijman T.A.J.
        • van Vliet E.O.G.
        • Benders M.J.N.
        • et al.
        Placental histology in spontaneous and indicated preterm birth: a case control study.
        Placenta. 2016; 48: 56-62
        • Kovo M.
        • Schreiber L.
        • Ben-Haroush A.
        • et al.
        The placental factor in spontaneous preterm labor with and without premature rupture of membranes.
        J Perinat Med. 2011; 39: 423-429
        • Stanek J.
        Comparison of placental pathology in preterm, late-preterm, near-term, and term births.
        Am J Obstet Gynecol. 2014; 210: 1-6
        • Sarker S.
        • Scholz-Romero K.
        • Perez A.
        • et al.
        Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy.
        J Transl Med. 2014; 12: 204
        • Burton G.J.
        • Jauniaux E.
        What is the placenta?.
        Am J Obstet Gynecol. 2015; 213: S6.e1-S6.e4
        • Salomon C.
        • Rice G.E.
        Role of exosomes in placental homeostasis and pregnancy disorders. 1st ed. Vol. 145, Progress in Molecular Biology and TranslationalScience.
        Elsevier, Amsterdam2017: 163-179
        • Salomon C.
        • Torres M.J.
        • Kobayashi M.
        • et al.
        A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.
        PLoS One. 2014; 9