Advertisement

Diagnostic performance of third-trimester ultrasound for the prediction of late-onset fetal growth restriction: a systematic review and meta-analysis

  • Author Footnotes
    1 These authors contributed equally to this article.
    Javier Caradeux
    Footnotes
    1 These authors contributed equally to this article.
    Affiliations
    Fetal Medicine Research Center, BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Barcelona, Catalonia, Spain

    Maternal-Fetal Medicine and Therapy Research Center Mexico in behalf of the Iberoamerican Research Network in Translational, Molecular and Maternal-Fetal Medicine, Mexico City, Mexico
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this article.
    Raigam J. Martinez-Portilla
    Footnotes
    1 These authors contributed equally to this article.
    Affiliations
    Fetal Medicine Research Center, BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Barcelona, Catalonia, Spain

    Fetal Diagnostic Center Mexico/Clínica Hospital Sinai, on behalf of the Iberoamerican Research Network in Translational, Molecular, and Maternal-Fetal Medicine, Mexico
    Search for articles by this author
  • Anna Peguero
    Affiliations
    Fetal Medicine Research Center, BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Barcelona, Catalonia, Spain
    Search for articles by this author
  • Alexandros Sotiriadis
    Affiliations
    Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
    Search for articles by this author
  • Francesc Figueras
    Correspondence
    Corresponding author: Francesc Figueras, MD, PhD.
    Affiliations
    Fetal Medicine Research Center, BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Barcelona, Catalonia, Spain

    Center for Biomedical Research on Rare Diseases, Madrid, Spain
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this article.
Published:January 09, 2019DOI:https://doi.org/10.1016/j.ajog.2018.09.043

      Objective

      The objective of the study was to establish the diagnostic performance of ultrasound screening for predicting late smallness for gestational age and/or fetal growth restriction.

      Data Sources

      A systematic search was performed to identify relevant studies published since 2007 in English, Spanish, French, Italian, or German, using the databases PubMed, ISI Web of Science, and SCOPUS.

      Study Eligibility Criteria

      We used rrospective and retrospective cohort studies in low-risk or nonselected singleton pregnancies with screening ultrasound performed at ≥32 weeks of gestation.

      Study Appraisal and Synthesis Methods

      The estimated fetal weight and fetal abdominal circumference were assessed as index tests for the prediction of birthweight <10th (i.e. smallness for gestational age), less than the fifth, and less than the third centile and fetal growth restriction (estimated fetal weight less than the third or estimated fetal weight <10th plus Doppler signs). Quality of the included studies was independently assessed by 2 reviewers, using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. For the meta-analysis, hierarchical summary receiver-operating characteristic curves were constructed, and quantitative data synthesis was performed using random-effects models. The sensitivity of the abdominal circumference <10th centile and estimated fetal weight <10th centile for a fixed 10% false-positive rate was derived from the corresponding hierarchical summary receiver-operating characteristic curves. Heterogeneity between studies was visually assessed using Galbraith plots, and publication bias was assessed by funnel plots and quantified by Deeks’ method.

      Results

      A total of 21 studies were included. Observed pooled sensitivities of abdominal circumference and estimated fetal weight <10th centile for birthweight <10th centile were 35% (95% confidence interval, 20–52%) and 38% (95% confidence interval, 31–46%), respectively. Observed pooled specificities were 97% (95% confidence interval, 95–98%) and 95% (95% confidence interval, 93–97%), respectively. Modeled sensitivities of abdominal circumference and estimated fetal weight <10th centile for 10% false-positive rate were 78% (95% confidence interval, 61–95%) and 54% (95% confidence interval, 46–52%), respectively. The sensitivity of estimated fetal weight <10th centile was better when aimed to fetal growth restriction than to smallness for gestational age. Meta-regression analysis showed a significant increase in sensitivity when ultrasound evaluation was performed later in pregnancy (P = .001).

      Conclusion

      Third-trimester abdominal circumference and estimated fetal weight perform similar in predicting smallness for gestational age. However, for a fixed 10% false-positive rate extrapolated sensitivity is higher for abdominal circumference. There is evidence of better performance when the scan is performed near term and when fetal growth restriction is the targeted condition.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Caradeux J.
        • Martinez-Portilla R.J.J.
        • Basuki T.R.R.
        • Kiserud T.
        • Figueras F.
        Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis.
        Am J Obstet Gynecol. 2017; 218: S774-S782.e21
        • von Beckerath A.-K.
        • Kollmann M.
        • Rotky-Fast C.
        • Karpf E.
        • Lang U.
        • Klaritsch P.
        Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction.
        Am J Obstet Gynecol. 2013; 208: 130.e1-130.e6
        • Doyle L.W.
        Long-term neurologic outcome for the very preterm growth-restricted fetus.
        Pediatrics. 2011; 127: e1048-e1049
        • Richardus J.H.
        • Graafmans W.C.
        • Verloove-Vanhorick S.P.
        • Mackenbach J.P.
        • EuroNatal International Audit Panel
        • EuroNatal Working Group
        Differences in perinatal mortality and suboptimal care between 10 European regions: results of an international audit.
        BJOG. 2003; 110: 97-105
        • Gardosi J.
        • Madurasinghe V.
        • Williams M.
        • Malik A.
        • Francis A.
        Maternal and fetal risk factors for stillbirth: population based study.
        BMJ. 2013; 346: f108
        • Lindqvist P.G.
        • Molin J.
        Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome?.
        Ultrasound Obstet Gynecol. 2005; 25: 258-264
        • Gordijn S.J.
        • Beune I.M.
        • Thilaganathan B.
        • et al.
        Consensus definition of fetal growth restriction: a Delphi procedure.
        Ultrasound Obstet Gynecol. 2016; 48: 333-339
        • Figueras F.
        • Caradeux J.
        • Crispi F.
        • Eixarch E.
        • Peguero A.
        • Gratacos E.
        Diagnosis and surveillance of late-onset fetal growth restriction.
        Am J Obstet Gynecol. 2018; 218 (S790–802.e1)
        • Cosmi E.
        • Ambrosini G.
        • D’Antona D.
        • Saccardi C.
        • Mari G.
        Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses.
        Obstet Gynecol. 2005; 106: 1240-1245
        • Crimmins S.
        • Desai A.
        • Block-Abraham D.
        • Berg C.
        • Gembruch U.
        • Baschat A.A.
        A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses.
        Am J Obstet Gynecol. 2014; 211: 669.e1-669.e10
        • Oros D.
        • Figueras F.
        • Cruz-Martinez R.
        • Meler E.
        • Munmany M.
        • Gratacos E.
        Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses.
        Ultrasound Obstet Gynecol. 2011; 37: 191-195
        • Zhu M.Y.
        • Milligan N.
        • Keating S.
        • et al.
        The hemodynamics of late-onset intrauterine growth restriction by MRI.
        Am J Obstet Gynecol. 2016; 214: 367.e1-367.e17
        • Crovetto F.
        • Triunfo S.
        • Crispi F.
        • et al.
        First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction.
        Ultrasound Obstet Gynecol. 2016; 48: 340-348
        • Cnossen J.S.
        • Morris R.K.
        • ter Riet G.
        • et al.
        Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis.
        CMAJ. 2008; 178: 701-711
        • Plasencia W.
        • Maiz N.
        • Poon L.
        • Yu C.
        • Nicolaides K.H.
        Uterine artery Doppler at 11 + 0 to 13 + 6 weeks and 21 + 0 to 24 + 6 weeks in the prediction of pre-eclampsia.
        Ultrasound Obstet Gynecol. 2008; 32: 138-146
        • Crovetto F.
        • Crispi F.
        • Scazzocchio E.
        • et al.
        First-trimester screening for early and late small-for-gestational-age neonates using maternal serum biochemistry, blood pressure and uterine artery Doppler.
        Ultrasound Obstet Gynecol. 2014; 43: 34-40
        • Karagiannis G.
        • Akolekar R.
        • Sarquis R.
        • Wright D.
        • Nicolaides K.H.
        Prediction of small-for-gestation neonates from biophysical and biochemical markers at 11–13 weeks.
        Fetal Diagn Ther. 2011; 29: 148-154
        • Hernandez-Andrade E.
        • Maymon E.
        • Erez O.
        • et al.
        A low cerebroplacental ratio at 20–24 weeks of gestation can predict reduced fetal size later in pregnancy or at birth.
        Fetal Diagn Ther. 2018; 44: 112-123
        • Clausson B.
        • Gardosi J.
        • Francis A.
        • Cnattingius S.
        Perinatal outcome in SGA births defined by customised versus population-based birthweight standards.
        BJOG. 2001; 108: 830-834
        • Dudley N.J.
        A systematic review of the ultrasound estimation of fetal weight.
        Ultrasound Obstet Gynecol. 2005; 25: 80-89
        • Chang T.C.
        • Robson S.C.
        • Boys R.J.
        • Spencer J.A.
        Prediction of the small for gestational age infant: which ultrasonic measurement is best?.
        Obstet Gynecol. 1992; 80: 1030-1038
        • Lackman F.
        • Capewell V.
        • Gagnon R.
        • Richardson B.
        Fetal umbilical cord oxygen values and birth to placental weight ratio in relation to size at birth.
        Am J Obstet Gynecol. 2001; 185: 674-682
        • Sotiriadis A.
        • Papatheodorou S.I.
        • Martins W.P.
        Synthesizing Evidence from Diagnostic Accuracy TEsts: the SEDATE guideline.
        Ultrasound Obstet Gynecol. 2016; 47: 386-395
        • Whiting P.F.
        • Rutjes A.W.S.
        • Westwood M.E.
        • et al.
        QUADAS-2: a revised tool for the Quality Assessment of Diagnostic Accuracy Studies.
        Ann Intern Med. 2011; 155: 529
        • Reitsma J.B.
        • Glas A.S.
        • Rutjes A.W.S.
        • Scholten R.J.P.M.
        • Bossuyt P.M.
        • Zwinderman A.H.
        Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.
        J Clin Epidemiol. 2005; 58: 982-990
        • Rutter C.M.
        • Gatsonis C.A.
        A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations.
        Stat Med. 2001; 20: 2865-2884
        • Harbord R.M.
        • Deeks J.J.
        • Egger M.
        • Whiting P.
        • Sterne J.A.C.
        A unification of models for meta-analysis of diagnostic accuracy studies.
        Biostatistics. 2007; 8: 239-251
        • Borenstein M.
        Introduction to Meta-Analysis.
        John Wiley & Sons, Chichester, West Sussex, UK2009
        • van Enst W.A.
        • Ochodo E.
        • Scholten R.J.
        • Hooft L.
        • Leeflang M.M.
        Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study.
        BMC Med Res Methodol. 2014; 14: 70
        • Galbraith R.F.
        Some applications of radial plots.
        J Am Stat Assoc. 1994; 89: 1232-1242
        • Macaskill P.
        • Gatsonis C.
        • Deeks J.J.
        • Harbord R.M.T.Y.
        Chapter 10: Analysing and Presenting Results.
        in: Deeks J.J. Bossuyt P.M.G.C. Cochrane handbook for systematic reviews of diagnostic test accuracy. Version 1.0. The Cochrane Collaboration, 2010
      1. Dwamena, Ben A. Midas: A program for Meta-analytical Integration of Diagnostic Accuracy Studies in Stata. Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan. 2007.

      2. Harbord, RM. Metandi: Stata module for meta-analysis of diagnostic accuracy. Statistical Software Components, Boston College Department of Economics. Revised April 15, 2008.

        • Souka A.P.
        • Papastefanou I.
        • Pilalis A.
        • Michalitsi V.
        • Panagopoulos P.
        • Kassanos D.
        Performance of the ultrasound examination in the early and late third trimester for the prediction of birth weight deviations.
        Prenat Diagn. 2013; 33: 915-920
        • Sovio U.
        • White I.R.
        • Dacey A.
        • Pasupathy D.
        • Smith G.C.S.
        Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study.
        Lancet (London, England). 2015; 386: 2089-2097
        • Fadigas C.
        • Saiid Y.
        • Gonzalez R.
        • Poon L.C.
        • Nicolaides K.H.
        Prediction of small-for-gestational-age neonates: screening by fetal biometry at 35–37 weeks.
        Ultrasound Obstet Gynecol. 2015; 45: 559-565
        • Bakalis S.
        • Silva M.
        • Akolekar R.
        • Poon L.C.
        • Nicolaides K.H.
        Prediction of small-for-gestational-age neonates: screening by fetal biometry at 30–34 weeks.
        Ultrasound Obstet Gynecol. 2015; 45: 551-558
        • Roma E.
        • Arnau A.
        • Berdala R.
        • Bergos C.
        • Montesinos J.
        • Figueras F.
        Ultrasound screening for fetal growth restriction at 36 vs 32 weeks’ gestation: a randomized trial (ROUTE).
        Ultrasound Obstet Gynecol. 2015; 46: 391-397
        • Al-Amin A.
        • Hingston T.
        • Mayall P.
        • Araujo Júnior E.
        • Fabrício Da Silva C.
        • Friedman D.
        The utility of ultrasound in late pregnancy compared with clinical evaluation in detecting small and large for gestational age fetuses in low-risk pregnancies.
        J Matern Fetal Neonatal Med. 2015; 28: 1495-1499
        • Tarca A.L.
        • Hernandez-Andrade E.
        • Ahn H.
        • et al.
        Single and serial fetal biometry to detect preterm and term small- and large-for-gestational-age neonates: a longitudinal cohort study.
        in: Burd I. PLoS One. 11. 2016: e0164161
        • Miranda J.
        • Rodriguez-Lopez M.
        • Triunfo S.
        • et al.
        Prediction of fetal growth restriction using estimated fetal weight vs a combined screening model in the third trimester.
        Ultrasound Obstet Gynecol. 2017; 50: 603-611
        • Valiño N.
        • Giunta G.
        • Gallo D.M.
        • Akolekar R.
        • Nicolaides K.H.
        Biophysical and biochemical markers at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome.
        Ultrasound Obstet Gynecol. 2016; 47: 194-202
        • Valiño N.
        • Giunta G.
        • Gallo D.M.
        • Akolekar R.
        • Nicolaides K.H.
        Biophysical and biochemical markers at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome.
        Ultrasound Obstet Gynecol. 2016; 47: 203-209
        • Hammad I.A.
        • Chauhan S.P.
        • Mlynarczyk M.
        • et al.
        Uncomplicated pregnancies and ultrasounds for fetal growth restriction: a pilot randomized clinical trial.
        AJP Rep. 2016; 6 (e83–90)
        • Triunfo S.
        • Crispi F.
        • Gratacos E.
        • Figueras F.
        Prediction of delivery of small-for-gestational-age neonates and adverse perinatal outcome by fetoplacental Doppler at 37 weeks’ gestation.
        Ultrasound Obstet Gynecol. 2017; 49: 364-371
        • Rad S.
        • Beauchamp S.
        • Morales C.
        • Mirocha J.
        • Esakoff T.F.
        Defining fetal growth restriction: abdominal circumference as an alternative criterion.
        J Matern Fetal Neonatal Med. 2017; 0: 1-6
        • Simcox L.E.
        • Myers J.E.
        • Cole T.J.
        • Johnstone E.D.
        Fractional fetal thigh volume in the prediction of normal and abnormal fetal growth during the third trimester of pregnancy.
        Am J Obstet Gynecol. 2017; 217: 453.e1-453.e12
        • Sokol Karadjole V.
        • Agarwal U.
        • Berberovic E.
        • Poljak B.
        • Alfirevic Z.
        Does serial 3rd trimester ultrasound improve detection of small for gestational age babies: comparison of screening policies in 2 European maternity units.
        Eur J Obstet Gynecol Reprod Biol. 2017; 215: 45-49
        • Caradeux J.
        • Eixarch E.
        • Mazarico E.
        • Basuki T.R.
        • Gratacós E.
        • Figueras F.
        Second- to third-trimester longitudinal growth assessment for prediction of small-for-gestational age and late fetal growth restriction.
        Ultrasound Obstet Gynecol. 2018; 51: 219-224
        • Carlin A.
        • Kadji C.
        • De Angelis R.
        • Cannie M.M.
        • Jani J.C.
        Prenatal prediction of small-for-gestational age neonates using MR imaging: comparison with conventional 2D ultrasound.
        J Matern Fetal Neonatal Med. 2017; 7058: 1-9
        • Basuki T.R.
        • Caradeux J.
        • Eixarch E.
        • Gratacós E.
        • Figueras F.
        Longitudinal assessment of abdominal circumference versus estimated fetal weight in the detection of late fetal growth restriction.
        Fetal Diagn Ther. 2018; : 1-8
        • Volpe G.
        • Ioannou C.
        • Cavallaro A.
        • Vannuccini S.
        • Ruiz-Martinez S.
        • Impey L.
        The influence of fetal sex on the antenatal diagnosis of small for gestational age.
        J Matern Fetal Neonatal Med. 2018; 0: 1-6
        • Rial-Crestelo M.
        • Martinez-Portilla R.J.
        • Cancemi A.
        • et al.
        Added value of cerebro-placental ratio and uterine artery Doppler at routine third trimester screening as a predictor of SGA and FGR in non-selected pregnancies.
        J Matern Fetal Neonatal Med. 2018; : 1-7
        • Sotiriadis A.
        • Figueras F.
        • Eleftheriades M.
        • et al.
        First-trimester and combined first- and second-trimester prediction of small-for-gestational age and fetuses with late growth restriction.
        Ultrasound Obstet Gynecol. 2018; : 0-2
        • Skråstad R.B.
        • Eik-Nes S.H.
        • Sviggum O.
        • et al.
        A randomized controlled trial of third-trimester routine ultrasound in a non-selected population.
        Acta Obstet Gynecol Scand. 2013; 92: 1353-1360
        • Ben-Haroush A.
        • Yogev Y.
        • Hod M.
        • Bar J.
        Predictive value of a single early fetal weight estimate in normal pregnancies.
        Eur J Obstet Gynecol Reprod Biol. 2007; 130: 187-192
        • Souka A.P.
        • Papastefanou I.
        • Pilalis A.
        • Michalitsi V.
        • Kassanos D.
        Performance of third-trimester ultrasound for prediction of small-for-gestational-age neonates and evaluation of contingency screening policies.
        Ultrasound Obstet Gynecol. 2012; 39: 535-542
        • Di Lorenzo G.
        • Monasta L.
        • Ceccarello M.
        • Cecotti V.
        • D’Ottavio G.
        Third trimester abdominal circumference, estimated fetal weight and uterine artery doppler for the identification of newborns small and large for gestational age.
        Eur J Obstet Gynecol Reprod Biol. 2013; 166: 133-138
        • Revankar K.G.
        • Dhumale H.
        • Pujar Y.
        A randomized controlled study to assess the role of routine third trimester ultrasound in low-risk pregnancy on antenatal interventions and perinatal outcome.
        J SAFOG. 2014; 6: 139-143
        • Stirnemann J.J.
        • Benoist G.
        • Salomon L.J.
        • Bernard J.-P.
        • Ville Y.
        Optimal risk assessment of small-for-gestational-age fetuses using 31- to 34-week biometry in a low-risk population.
        Ultrasound Obstet Gynecol. 2014; 43: 311-316
        • Callec R.
        • Lamy C.
        • Perdriolle-Galet E.
        • et al.
        Impact on obstetric outcome of third-trimester screening for small-for-gestational-age fetuses.
        Ultrasound Obstet Gynecol. 2015; 46: 216-220
        • Papastefanou I.
        • Souka A.P.
        • Eleftheriades M.
        • Pilalis A.
        • Chrelias C.
        • Kassanos D.
        Predicting fetal growth deviation in parous women: combining the birth weight of the previous pregnancy and third trimester ultrasound scan.
        J Perinat Med. 2015; 43: 485-492
        • Triunfo S.
        • Crovetto F.
        • Scazzocchio E.
        • Parra-Saavedra M.
        • Gratacos E.
        • Figueras F.
        Contingent versus routine third-trimester screening for late fetal growth restriction.
        Ultrasound Obstet Gynecol. 2016; 47: 81-88
        • Peyronnet V.
        • Kayem G.
        • Mandelbrot L.
        • Sibiude J.
        [Detection of small for gestational age fetuses during third trimester ultrasound. A monocentric observational study].
        Gynecol Obstet Fertil. 2016; 44: 531-536
        • Sekar R.
        • Khatun M.
        • Barrett H.L.
        • Duncombe G.
        A prospective pilot study in assessing the accuracy of ultrasound estimated fetal weight prior to delivery.
        Aust N Z J Obstet Gynaecol. 2016; 56: 49-53
        • Reboul Q.
        • Delabaere A.
        • Luo Z.C.
        • et al.
        Prediction of small-for-gestational-age neonate by third-trimester fetal biometry and impact of ultrasound-delivery interval.
        Ultrasound Obstet Gynecol. 2017; 49: 372-378
        • Gratacós E.
        • Figueras F.
        Fetal growth restriction as a perinatal and long-term health problem: clinical challenges and opportunities for future (4P) fetal medicine.
        Fetal Diagn Ther. 2014; 36: 85
        • Figueras F.
        • Savchev S.
        • Triunfo S.
        • Crovetto F.
        • Gratacos E.
        An integrated model with classification criteria to predict small-for-gestational-age fetuses at risk of adverse perinatal outcome.
        Ultrasound Obstet Gynecol. 2015; 45: 279-285
        • Barker D.J.
        In utero programming of chronic disease.
        Clin Sci (Lond). 1998; 95: 115-128
        • Godfrey K.M.
        • Barker D.J.
        Fetal programming and adult health.
        Public Health Nutr. 2001; 4: 611-624
        • Figueras F.
        • Gratacos E.
        An integrated approach to fetal growth restriction.
        Best Pract Res Clin Obstet Gynaecol. 2017; 38: 48-58
        • McCowan L.M.
        • Figueras F.
        • Anderson N.H.
        Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy.
        Am J Obstet Gynecol. 2018; 218: S855-S868
        • American College of Obstetricians and Gynecologists
        Fetal growth restriction. ACOG Practice bulletin no. 134.
        Obstet Gynecol. 2013; 121: 1122-1133
        • Royal College of Obstetricians and Gynaecologists
        The investigation and management of the small-for-gestational-age fetus.
        Green–top Guideline No 31. 2013;
        • Blue N.R.
        • Yordan J.M.P.
        • Holbrook B.D.
        • Nirgudkar P.A.
        • Mozurkewich E.L.
        Abdominal circumference alone versus estimated fetal weight after 24 weeks to predict small or large for gestational age at birth: a meta-analysis.
        Am J Perinatol. 2017; 34: 1115-1124
        • Gardosi J.
        • Francis A.
        • Turner S.
        • Williams M.
        Customized growth charts: rationale, validation and clinical benefits.
        Am J Obstet Gynecol. 2018; 218: S609-S618
        • Chauhan S.P.
        • Cole J.
        • Sanderson M.
        • Magann E.F.
        • Scardo J.A.
        Suspicion of intrauterine growth restriction: use of abdominal circumference alone or estimated fetal weight below 10%.
        J Matern Fetal Neonatal Med. 2006; 19: 557-562
        • Blue N.R.
        • Beddow M.E.
        • Savabi M.
        • Katukuri V.R.
        • Mozurkewich E.L.
        • Chao C.R.
        A comparison of methods for the diagnosis of fetal growth restriction between the Royal College of Obstetricians and Gynaecologists and the American College of Obstetricians and Gynecologists.
        Obstet Gynecol. 2018; 131: 835-841
        • Khalil A.
        • Morales-Rosello J.
        • Khan N.
        • et al.
        Is cerebroplacental ratio a marker of impaired fetal growth velocity and adverse pregnancy outcome?.
        Am J Obstet Gynecol. 2017; 216: 606.e1-606.e10
        • Melamed N.
        Re: Prediction of adverse perinatal outcome of small-for-gestational-age pregnancy using size centiles and conditional growth centiles. H. O. Karlsen, S. L. Johnsen, S. Rasmussen and T. Kiserud. Ultrasound Obstet Gynecol 2016;48:217-223.
        Ultrasound Obstet Gynecol. 2016; 48: 148-149
        • Grantz K.L.
        • Hediger M.L.
        • Liu D.
        • Buck Louis G.M.
        Fetal growth standards: the NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study.
        Am J Obstet Gynecol. 2018; 218: S641-S655.e28
        • Sovio U.
        • Smith G.C.S.
        The effect of customization and use of a fetal growth standard on the association between birthweight percentile and adverse perinatal outcome.
        Am J Obstet Gynecol. 2018; 218: S738-S744
        • Francis A.
        • Hugh O.
        • Gardosi J.
        Customized vs INTERGROWTH-21 st standards for the assessment of birthweight and stillbirth risk at term.
        Am J Obstet Gynecol. 2018; 218: S692-S699