Threshold of metabolic acidosis associated with newborn cerebral palsy: medical legal implications

Published:December 07, 2018DOI:
      Obstetricians and gynecologists belong to 1 of the medical specialties with the highest rate of litigation claims. Among birth injury cases, those cases with cerebral palsy outcomes account for litigation settlements or judgments often in the millions of dollars. In cases of potential perinatal asphyxia, a threshold level of metabolic acidosis (base deficit ≥12 mmol/L) is necessary to attribute neonatal encephalopathy to an intrapartum hypoxic event. With increasing duration or severity of a hypoxic stress resulting in metabolic acidosis, newborn infant umbilical artery base deficit increases. It may be alleged that, as base deficit levels increase beyond 12 mmol/L, there is an increased likelihood and severity of cerebral palsy. As a corollary, it may be claimed that an earlier delivery (by minutes) would reduce the base deficit and prevent or reduce the severity of cerebral palsy. This issue is of relevance to obstetricians as defendants, because retrospective “expert” analysis of cases may suggest that optimal management decisions would have resulted in an earlier delivery. In addressing the association of metabolic acidosis and cerebral palsy, base deficit should be measured as the extracellular component (base deficitextracellular fluid) rather than the commonly used base deficitblood. Studies suggest that, beyond the base deficit threshold of 12 mmol/L, the incidence and severity of cerebral palsy does not significantly increase (until ≥20 mmol/L), although the risk of neonatal death rises markedly. Thus, among most infants with hypoxia-associated neonatal encephalopathy, the occurrence of cerebral palsy is unlikely to be impacted by delivery time variation of few minutes, and this argument should not serve as the basis for medical legal claims.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Glaser L.M.
        • Alvi F.A.
        • Milad M.P.
        Trends in malpractice claims for obstetric and gynecologic procedures, 2005 through 2014.
        Am J Obstet Gynecol. 2017; 217: 340.e1-340.e6
        • Mavroforou A.
        • Koumantakis E.
        • Michalodimitrakis E.
        Physicians’ liability in obstetric and gynecology practice.
        Med Law. 2005; 24: 1-9
        • Jena A.B.
        • Seabury S.
        • Lakdawalla D.
        • Chandra A.
        Malpractice risk according to physician specialty.
        N Engl J Med. 2011; 365: 629-636
        • Katz R.T.
        • Johnson C.B.
        Life care planning for the child with cerebral palsy.
        Phys Med Rehabil Clin N Am. 2013; 24: 491-505
        • Sharif Azar E.
        • Ravanbakhsh M.
        • Torabipour A.
        • Amiri E.
        • Haghighyzade M.H.
        Home-based versus center-based care in children with cerebral palsy: a cost-effectiveness analysis.
        J Med Life. 2015; 8: 245-251
        • Schifrin B.S.
        • Cohen W.R.
        The effect of malpractice claims on the use of caesarean section.
        Best Pract Res Clin Obstet Gynaecol. 2013; 27: 269-283
        • Johnson C.T.
        • Choubey V.
        • Satin A.J.
        • Werner E.F.
        Malpractice and obstetric practice: the correlation of malpractice premiums to rates of vaginal and cesarean delivery.
        Am J Obstet Gynecol. 2016; 214: 545-546
        • Maclennan A.
        • Nelson K.B.
        • Hankins G.
        • Speer M.
        Who will deliver our grandchildren? Implications of cerebral palsy litigation.
        JAMA. 2005; 294: 1688-1690
        • Sartwelle T.P.
        • Johnston J.C.
        Cerebral palsy litigation: change course or abandon ship.
        J Child Neurol. 2015; 30: 828-841
        • Leviton A.
        Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy.
        Am J Obstet Gynecol. 2013; 208: 176-180
        • Larma J.D.
        • Silva A.M.
        • Holcroft C.J.
        • Thompson R.E.
        • Donohue P.K.
        • Graham E.M.
        Intrapartum electronic fetal heart rate monitoring and the identification of metabolic acidosis and hypoxic-ischemic encephalopathy.
        Am J Obstet Gynecol. 2007; 197: 301.e1-301.e8
        • Kesselheim A.S.
        • Studdert D.M.
        Characteristics of physicians who frequently act as expert witnesses in neurologic birth injury litigation.
        Obstet Gynecol. 2006; 108: 273-279
        • Olive D.L.
        The dangers of junk science in obstetrics and gynecology: lessons from the power morcellation controversy.
        Curr Opin Obstet Gynecol. 2015; 27: 249-252
        • American College Of O, Gynecologists
        ACOG Practice Bulletin No. 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles.
        Obstet Gynecol. 2009; 114: 192-202
        • Cahill A.G.
        • Tuuli M.G.
        • Stout M.J.
        • Lopez J.D.
        • Macones G.A.
        A prospective cohort study of fetal heart rate monitoring: deceleration area is predictive of fetal acidemia.
        Am J Obstet Gynecol. 2018; 218: 523.e1-523.e12
        • Clark S.L.
        • Hamilton E.F.
        • Garite T.J.
        • Timmins A.
        • Warrick P.A.
        • Smith S.
        The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia.
        Am J Obstet Gynecol. 2017; 216: 163.e1-163.e6
        • Clark S.L.
        • Nageotte M.P.
        • Garite T.J.
        • et al.
        Intrapartum management of category II fetal heart rate tracings: towards standardization of care.
        Am J Obstet Gynecol. 2013; 209: 89-97
        • Thuillier C.
        • Roy S.
        • Peyronnet V.
        • Quibel T.
        • Nlandu A.
        • Rozenberg P.
        Impact of recommended changes in labor management for prevention of the primary cesarean delivery.
        Am J Obstet Gynecol. 2018; 218: 341.e1-341.e9
        • Whetten-Goldstein K.
        • Kulas E.
        • Sloan F.
        • Hickson G.
        • Entman S.
        Compensation for birth-related injury: no-fault programs compared with tort system.
        Arch Pediatr Adolesc Med. 1999; 153: 41-48
        • Patel K.
        No-fault medical liability in Virginia and Florida: a preliminary evaluation.
        Eval Health Prof. 1995; 18: 137-151
      1. Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy.
        Obstet Gynecol. 2014; 123: 896-901
        • Low J.A.
        • Lindsay B.G.
        • Derrick E.J.
        Threshold of metabolic acidosis associated with newborn complications.
        Am J Obstet Gynecol. 1997; 177: 1391-1394
        • B-Lynch C.
        • Coker A.
        • Dua J.A.
        A clinical analysis of 500 medico-legal claims evaluating the causes and assessing the potential benefit of alternative dispute resolution.
        BJOG. 1996; 103: 1236-1242
        • Cohen W.R.
        • Schifrin B.S.
        Medical negligence lawsuits relating to labor and delivery.
        Clin Perinatol. 2007; 34 (vii-viii): 345-360
        • Himmelmann K.
        • Uvebrant P.
        The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007-2010.
        Acta Paediatr. 2018; 107: 462-468
        • Badawi N.
        • Keogh J.M.
        Causal pathways in cerebral palsy.
        J Paediatr Child Health. 2013; 49: 5-8
        • Blair E.
        • Stanley F.J.
        Intrapartum asphyxia: a rare cause of cerebral palsy.
        J Pediatr. 1988; 112: 515-519
        • Ellenberg J.H.
        • Nelson K.B.
        The association of cerebral palsy with birth asphyxia: a definitional quagmire.
        Dev Med Child Neurol. 2013; 55: 210-216
        • Himmelmann K.
        • Hagberg G.
        • Uvebrant P.
        The changing panorama of cerebral palsy in Sweden. X. Prevalence and origin in the birth-year period 1999-2002.
        Acta Paediatr. 2010; 99: 1337-1343
        • Lorthe E.
        • Torchin H.
        • Delorme P.
        • et al.
        Preterm premature rupture of membranes at 22-25 weeks’ gestation: perinatal and 2-year outcomes within a national population-based study (EPIPAGE-2).
        Am J Obstet Gynecol. 2018; 219: 298.e1-298.e14
        • Dunbar M.
        • Kirton A.
        Perinatal stroke: mechanisms, management, and outcomes of early cerebrovascular brain injury.
        Lancet Child Adolesc Health. 2018; 2: 666-676
        • Johnson S.L.
        • Blair E.
        • Stanley F.J.
        Obstetric malpractice litigation and cerebral palsy in term infants.
        J Forensic Leg Med. 2011; 18: 97-100
        • Gupta M.
        • Schriger D.L.
        • Tabas J.A.
        The presence of outcome bias in emergency physician retrospective judgments of the quality of care.
        Ann Emerg Med. 2011; 57: 323-328.e9
        • Berlin L.
        Hindsight bias.
        AJR Am J Roentgenol. 2000; 175: 597-601
        • Arkes H.R.
        • Wortmann R.L.
        • Saville P.D.
        • Harkness A.R.
        Hindsight bias among physicians weighing the likelihood of diagnoses.
        J Appl Psychol. 1981; 66: 252-254
        • Hugh T.B.
        • Tracy G.D.
        Hindsight bias in medicolegal expert reports.
        Med J Aust. 2002; 176: 277-278
        • Williams B.
        • Arulkumaran S.
        Cardiotocography and medicolegal issues.
        Best Pract Res Clin Obstet Gynaecol. 2004; 18: 457-466
        • Sabiani L.
        • Le Du R.
        • Loundou A.
        • et al.
        Intra- and interobserver agreement among obstetric experts in court regarding the review of abnormal fetal heart rate tracings and obstetrical management.
        Am J Obstet Gynecol. 2015; 213: 856.e1-856.e8
        • Knowles T.P.
        • Mullin R.A.
        • Hunter J.A.
        • Douce F.H.
        Effects of syringe material, sample storage time, and temperature on blood gases and oxygen saturation in arterialized human blood samples.
        Respir Care. 2006; 51: 732-736
        • Owen P.
        • Farrell T.A.
        • Steyn W.
        Umbilical cord blood gas analysis; a comparison of two simple methods of sample storage.
        Early Hum Dev. 1995; 42: 67-71
        • Rosen K.G.
        • Murphy K.W.
        How to assess fetal metabolic acidosis from cord samples.
        J Perinat Med. 1991; 19: 221-226
        • Siggaard-Andersen O.
        An acid-base chart for arterial blood with normal and pathophysiological reference areas.
        Scand J Clin Lab Invest. 1971; 27: 239-245
        • Berend K.
        Diagnostic use of base excess in acid-base disorders.
        N Engl J Med. 2018; 378: 1419-1428
        • Weiner C.P.
        The relationship between the umbilical artery systolic/diastolic ratio and umbilical blood gas measurements in specimens obtained by cordocentesis.
        Am J Obstet Gynecol. 1990; 162: 1198-1202
        • Lazarevic B.
        • Ljubic A.
        • Stevic R.
        • et al.
        Respiratory gases and acid base parameter of the fetus during the second and third trimester.
        Clin Exp Obstet Gynecol. 1991; 18: 81-84
        • Arikan G.M.
        • Scholz H.S.
        • Haeusler M.C.
        • Giuliani A.
        • Haas J.
        • Weiss P.A.
        Low fetal oxygen saturation at birth and acidosis.
        Obstet Gynecol. 2000; 95: 565-571
        • Ross M.G.
        • Gala R.
        Use of umbilical artery base excess: algorithm for the timing of hypoxic injury.
        Am J Obstet Gynecol. 2002; 187: 1-9
        • Ross M.G.
        • Jessie M.
        • Amaya K.
        • et al.
        Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus.
        Am J Obstet Gynecol. 2013; 208: 285-286
        • Low J.A.
        • Pancham S.R.
        • Piercy W.N.
        • Worthington D.
        • Karchmar J.
        Intrapartum fetal asphyxia: clinical characteristics, diagnosis, and significance in relation to pattern of development.
        Am J Obstet Gynecol. 1977; 129: 857-872
        • Leung A.S.
        • Leung E.K.
        • Paul R.H.
        Uterine rupture after previous cesarean delivery: maternal and fetal consequences.
        Am J Obstet Gynecol. 1993; 169: 945-950
        • Sibai B.M.
        • Lipshitz J.
        • Schneider J.M.
        • Anderson G.D.
        • Morrison J.C.
        • Dilts Jr., P.V.
        Sinusoidal fetal heart rate pattern.
        Obstet Gynecol. 1980; 55: 637-642
        • Nunes I.
        • Ayres-De-Campos D.
        • Kwee A.
        • Rosen K.G.
        Prolonged saltatory fetal heart rate pattern leading to newborn metabolic acidosis.
        Clin Exp Obstet Gynecol. 2014; 41: 507-511
        • Uccella S.
        • Cromi A.
        • Colombo G.F.
        • et al.
        Interobserver reliability to interpret intrapartum electronic fetal heart rate monitoring: does a standardized algorithm improve agreement among clinicians?.
        J Obstet Gynaecol. 2015; 35: 241-245
        • Uccella S.
        • Cromi A.
        • Colombo G.
        • et al.
        Prediction of fetal base excess values at birth using an algorithm to interpret fetal heart rate tracings: a retrospective validation.
        BJOG. 2012; 119: 1657-1664
        • Kelly R.
        • Ramaiah S.M.
        • Sheridan H.
        • et al.
        Dose-dependent relationship between acidosis at birth and likelihood of death or cerebral palsy.
        Arch Dis Child Fetal Neonatal Ed. 2018; 103: F567-F572
        • Freeman J.M.
        • Nelson K.B.
        Intrapartum asphyxia and cerebral palsy.
        Pediatrics. 1988; 82: 240-249
        • Toh V.C.
        Early predictors of adverse outcome in term infants with post-asphyxial hypoxic ischaemic encephalopathy.
        Acta Paediatr. 2000; 89: 343-347
        • Carter B.S.
        • McNabb F.
        • Merenstein G.B.
        Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia.
        J Pediatr. 1998; 132: 619-623
        • Talati A.J.
        • Yang W.
        • Yolton K.
        • Korones S.B.
        • Bada H.S.
        Combination of early perinatal factors to identify near-term and term neonates for neuroprotection.
        J Perinatol. 2005; 25: 245-250
        • Van De Riet J.E.
        • Vandenbussche F.P.
        • Le Cessie S.
        • Keirse M.J.
        Newborn assessment and long-term adverse outcome: a systematic review.
        Am J Obstet Gynecol. 1999; 180: 1024-1029
        • Andres R.L.
        • Saade G.
        • Gilstrap L.C.
        • et al.
        Association between umbilical blood gas parameters and neonatal morbidity and death in neonates with pathologic fetal acidemia.
        Am J Obstet Gynecol. 1999; 181: 867-871
        • Fee S.C.
        • Malee K.
        • Deddish R.
        • Minogue J.P.
        • Socol M.L.
        Severe acidosis and subsequent neurologic status.
        Am J Obstet Gynecol. 1990; 162: 802-806
        • Dijxhoorn M.J.
        • Visser G.H.
        • Huisjes H.J.
        • Fidler V.
        • Touwen B.C.
        The relation between umbilical pH values and neonatal neurological morbidity in full term appropriate-for-dates infants.
        Early Hum Dev. 1985; 11: 33-42
        • Malin G.L.
        • Morris R.K.
        • Khan K.S.
        Strength of association between umbilical cord pH and perinatal and long term outcomes: systematic review and meta-analysis.
        BMJ. 2010; 340: c1471
        • Low J.A.
        • Panagiotopoulos C.
        • Derrick E.J.
        Newborn complications after intrapartum asphyxia with metabolic acidosis in the term fetus.
        Am J Obstet Gynecol. 1994; 170: 1081-1087
        • Ting P.
        • Yamaguchi S.
        • Bacher J.D.
        • Killens R.H.
        • Myers R.E.
        Hypoxic-ischemic cerebral necrosis in midgestational sheep fetuses: physiopathologic correlations.
        Exp Neurol. 1983; 80: 227-245
        • De Courten-Myers G.M.
        • Yamaguchi S.
        • Wagner K.R.
        • Ting P.
        • Myers R.E.
        Brain injury from marked hypoxia in cats: role of hypotension and hyperglycemia.
        Stroke. 1985; 16: 1016-1021
        • Wagner K.R.
        • Ting P.
        • Westfall M.V.
        • Yamaguchi S.
        • Bacher J.D.
        • Myers R.E.
        Brain metabolic correlates of hypoxic-ischemic cerebral necrosis in mid-gestational sheep fetuses: significance of hypotension.
        J Cereb Blood Flow Metab. 1986; 6: 425-434
        • De Courten-Myers G.M.
        • Fogelson H.M.
        • Kleinholz M.
        • Myers R.E.
        Hypoxic brain and heart injury thresholds in piglets.
        Biomed Biochim Acta. 1989; 48: S143-S148
        • Myers R.E.
        • Kopf G.S.
        • Mirvis D.M.
        Hemodynamic response to profound hypoxia in intact rhesus monkeys.
        Stroke. 1980; 11: 389-393
        • De Haan H.H.
        • Gunn A.J.
        • Gluckman P.D.
        Fetal heart rate changes do not reflect cardiovascular deterioration during brief repeated umbilical cord occlusions in near-term fetal lambs.
        Am J Obstet Gynecol. 1997; 176: 8-17
        • Shankaran S.
        • Laptook A.R.
        • Ehrenkranz R.A.
        • et al.
        Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy.
        N Engl J Med. 2005; 353: 1574-1584
        • Shankaran S.
        • Pappas A.
        • McDonald S.A.
        • et al.
        Childhood outcomes after hypothermia for neonatal encephalopathy.
        N Engl J Med. 2012; 366: 2085-2092
        • Grether J.K.
        • Nelson K.B.
        • Emery 3rd, E.S.
        • Cummins S.K.
        Prenatal and perinatal factors and cerebral palsy in very low birth weight infants.
        J Pediatr. 1996; 128: 407-414
        • Grether J.K.
        • Nelson K.B.
        • Walsh E.
        • Willoughby R.E.
        • Redline R.W.
        Intrauterine exposure to infection and risk of cerebral palsy in very preterm infants.
        Arch Pediatr Adolesc Med. 2003; 157: 26-32
        • Nelson K.B.
        • Grether J.K.
        • Dambrosia J.M.
        • et al.
        Neonatal cytokines and cerebral palsy in very preterm infants.
        Pediatr Res. 2003; 53: 600-607
        • Yoon B.H.
        • Park C.W.
        • Chaiworapongsa T.
        Intrauterine infection and the development of cerebral palsy.
        BJOG. 2003; 110: 124-127
        • Skovgaard A.L.
        • Zachariassen G.
        Cranial ultrasound findings in preterm infants predict the development of cerebral palsy.
        Dan Med J. 2017; 64
        • Smilga A.S.
        • Garfinkle J.
        • Ng P.
        • et al.
        Neonatal Infection in children with cerebral palsy: a registry-based cohort study.
        Pediatr Neurol. 2018; 80: 77-83
        • Frusca T.
        • Todros T.
        • Lees C.
        • Bilardo C.M.
        • TRUFFLE Investigators
        Outcome in early-onset fetal growth restriction is best combining computerized fetal heart rate analysis with ductus venosus Doppler: insights from the Trial of Umbilical and Fetal Flow in Europe.
        Am J Obstet Gynecol. 2018; 218: S783-S789
        • Tolcos M.
        • Petratos S.
        • Hirst J.J.
        • et al.
        Blocked, delayed, or obstructed: what causes poor white matter development in intrauterine growth restricted infants?.
        Prog Neurobiol. 2017; 154: 62-77
        • Ganzevoort W.
        • Mensing Van Charante N.
        • Thilaganathan B.
        • et al.
        How to monitor pregnancies complicated by fetal growth restriction and delivery before 32 weeks: post-hoc analysis of TRUFFLE study.
        Ultrasound Obstet Gynecol. 2017; 49: 769-777
        • Golden C.G.
        Apgar scores as predictors of chronic neurologic disability, by Karin B. Nelson, MD, and Jonas H. Ellenberg, PhD, Pediatrics, 1981;68:36-44.
        Pediatrics. 1998; 102: 262-264
        • Shankaran S.
        • Woldt E.
        • Koepke T.
        • Bedard M.P.
        • Nandyal R.
        Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants.
        Early Hum Dev. 1991; 25: 135-148