Advertisement

Maternal pomegranate juice attenuates maternal inflammation–induced fetal brain injury by inhibition of apoptosis, neuronal nitric oxide synthase, and NF-κB in a rat model

Published:April 27, 2018DOI:https://doi.org/10.1016/j.ajog.2018.04.040

      Background

      Maternal inflammation is a risk factor for neonatal brain injury and future neurological deficits. Pomegranates have been shown to exhibit anti-inflammatory, anti-apoptotic and anti-oxidant activities.

      Objective

      We hypothesized that pomegranate juice (POM) may attenuate fetal brain injury in a rat model of maternal inflammation.

      Study Design

      Pregnant rats (24 total) were randomized for intraperitoneal lipopolysaccharide (100 μg/kg) or saline at time 0 at 18 days of gestation. From day 11 of gestation, 12 dams were provided ad libitum access to drinking water, and 12 dams were provided ad libitum access to drinking water with pomegranate juice (5 mL per day), resulting in 4 groups of 6 dams (saline/saline, pomegranate juice/saline, saline/lipopolysaccharide, pomegranate juice/lipopolysaccharide). All dams were sacrificed 4 hours following the injection and maternal blood and fetal brains were collected from the 4 treatment groups. Maternal interleukin-6 serum levels and fetal brain caspase 3 active form, nuclear factor-κB p65, neuronal nitric oxide synthase (phosphoneuronal nitric oxide synthase), and proinflammatory cytokine levels were determined by enzyme-linked immunosorbent assay and Western blot.

      Results

      Maternal lipopolysaccharide significantly increased maternal serum interleukin-6 levels (6039 ± 1039 vs 66 ± 46 pg/mL; P < .05) and fetal brain caspase 3 active form, nuclear factor-κB p65, phosphoneuronal nitric oxide synthase, and the proinflammatory cytokines compared to the control group (caspase 3 active form 0.26 ± 0.01 vs 0.20 ± 0.01 U; nuclear factor-κB p65 0.24 ± 0.01 vs 0.1 ± 0.01 U; phosphoneuronal nitric oxide synthase 0.23 ± 0.01 vs 0.11 ± 0.01 U; interleukin-6 0.25 ± 0.01 vs 0.09 ± 0.01 U; tumor necrosis factor-α 0.26 ± 0.01 vs 0.12 ± 0.01 U; chemokine (C-C motif) ligand 2 0.23 ± 0.01 vs 0.1 ± 0.01 U). Maternal supplementation of pomegranate juice to lipopolysaccharide-exposed dams (pomegranate juice/lipopolysaccharide) significantly reduced maternal serum interleukin-6 levels (3059 ± 1121 pg/mL, fetal brain: caspase 3 active form (0.2 ± 0.01 U), nuclear factor-κB p65 (0.22 ± 0.01 U), phosphoneuronal nitric oxide synthase (0.19 ± 0.01 U) as well as the brain proinflammatory cytokines (interleukin-6, tumor necrosis factor-α and chemokine [C-C motif] ligand 2) compared to lipopolysaccharide group.

      Conclusion

      Maternal pomegranate juice supplementation may attenuate maternal inflammation–induced fetal brain injury. Pomegranate juice neuroprotective effects might be secondary to the suppression of both the maternal inflammatory response and inhibition of fetal brain apoptosis, neuronal nitric oxide synthase, and nuclear factor-κB activation.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jones K.L.
        • Croen L.A.
        • Yoshida C.K.
        • et al.
        Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation.
        Mol Psychiatry. 2017; 22: 273-279
        • Jiang H.
        • Xu L.
        • Shao L.
        • et al.
        Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis.
        Brain Behav Immun. 2016; 58: 165-172
        • Pickler R.
        • Brown L.
        • McGrath J.
        • et al.
        Integrated review of cytokines in maternal, cord, and newborn blood: part II–associations with early infection and increased risk of neurologic damage in preterm infants.
        Biol Res Nurs. 2010; 11: 377-386
        • Meyer U.
        • Feldon J.
        • Schedlowski M.
        • Yee B.K.
        Immunological stress at the maternal-fetal interface: a link between neurodevelopment and adult psychopathology.
        Brain Behav Immun. 2006; 20: 378-388
        • Brown A.S.
        Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism.
        Dev Neurobiol. 2012; 72: 1272-1276
        • Meyer U.
        • Feldon J.
        • Yee B.K.
        A review of the fetal brain cytokine imbalance hypothesis of schizophrenia.
        Schizophr Bull. 2009; 35: 959-972
        • Wu Y.W.
        Systematic review of chorioamnionitis and cerebral palsy.
        Ment Retard Dev Disabil Res Rev. 2002; 8: 25-29
        • Allan S.M.
        • Tyrrell P.J.
        • Rothwell N.J.
        Interleukin-1 and neuronal injury.
        Nat Rev Immunol. 2005; 5: 629-640
        • Aly H.
        • Khashaba M.T.
        • El-Ayouty M.
        • El-Sayed O.
        • Hasanein B.M.
        IL-1β, IL-6 and TNF-α and outcomes of neonatal hypoxic ischemic encephalopathy.
        Brain Dev. 2006; 28: 178-182
        • Silverstein F.S.
        • Barks J.D.
        • Hagan P.
        • Liu X.H.
        • Ivacko J.
        • Szaflarski J.
        Cytokines and perinatal brain injury.
        Neurochem Int. 1997; 30: 375-383
        • Silveira R.C.
        • Procianoy R.S.
        Interleukin-6 and tumor necrosis factor-α levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic–ischemic encephalopathy.
        J Pediatr. 2003; 143: 625-629
        • Shim S.-Y.
        • Kim H.-S.
        Oxidative stress and the antioxidant enzyme system in the developing brain.
        Korean J Pediatr. 2013; 56: 107-111
        • Lalkovičová M.
        • Danielisová V.
        Neuroprotection and antioxidants.
        Neural Regen Res. 2016; 11: 865-874
        • Ginsberg Y.
        • Khatib N.
        • Weiner Z.
        • Beloosesky R.
        Maternal inflammation, fetal brain implications and suggested neuroprotection: a summary of 10 years of research in animal models.
        Rambam Maimonides Med J. 2017; 8: e0028
        • Elovitz M.A.
        • Brown A.G.
        • Breen K.
        • Anton L.
        • Maubert M.
        Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury.
        Int J Dev Neurosci. 2011; 29: 663-671
        • Elovitz M.A.
        • Brown A.G.
        • Breen K.
        • Anton L.
        • Maubert M.
        • Burd I.
        Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury.
        Int J Dev Neurosci. 2011; 29: 663-671
        • Elovitz M.A.
        • Mrinalini C.
        • Sammel M.D.
        Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth.
        Pediatr Res. 2006; 59: 50-55
        • Burd I.
        • Breen K.
        • Friedman A.
        • Chai J.
        • Elovitz M.A.
        Magnesium sulfate reduces inflammation-associated brain injury in fetal mice.
        Am J Obstet Gynecol. 2010; 202: 292.e1-292.e9
        • Cai Z.
        • Lin S.
        • Pang Y.
        • Rhodes P.G.
        Brain injury induced by intracerebral injection of interleukin-1beta and tumor necrosis factor-alpha in the neonatal rat.
        Pediatr Res. 2004; 56: 377-384
        • Pang Y.
        • Cai Z.
        • Rhodes P.G.
        Effect of tumor necrosis factor-alpha on developing optic nerve oligodendrocytes in culture.
        J Neurosci Res. 2005; 80: 226-234
        • Jurewicz A.
        • Matysiak M.
        • Tybor K.
        • Kilianek L.
        • Raine C.S.
        • Selmaj K.
        Tumor necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor.
        Brain. 2005; 128: 2675-2688
        • Burd I.
        • Balakrishnan B.
        • Kannan S.
        Models of fetal brain injury, intrauterine inflammation, and preterm birth.
        Am J Reprod Immunol. 2012; 67: 287-294
        • Buonocore G.
        • Perrone S.
        • Bracci R.
        Free radicals and brain damage in the newborn.
        Biol Neonate. 2001; 79: 180-186
        • Blackwell S.C.
        • Hallak M.
        • Hassan S.S.
        • Berry S.M.
        • Russell E.
        • Sorokin Y.
        The effects of intrapartum magnesium sulfate therapy on fetal serum interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha at delivery: a randomized, placebo-controlled trial.
        Am J Obstet Gynecol. 2001; 184: 1320-1324
        • Elliott C.L.
        • Allport V.C.
        • Loudon J.A.
        • Wu G.D.
        • Bennett P.R.
        Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells.
        Mol Hum Reprod. 2001; 7: 787-790
      1. Mccutcheon A, Udani J, Brown DJ. Scientific and clinical monograph. Available at: http://abc.herbalgram.org/site/DocServer/POM_FullMono.pdf?docID=781. Accessed April 9, 2018.

        • Faria A.
        • Calhau C.
        The bioactivity of pomegranate: impact on health and disease.
        Crit Rev Food Sci Nutr. 2011; 51: 626-634
        • Lansky E.P.
        • Newman R.A.
        Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer.
        J Ethnopharmacol. 2007; 109: 177-206
        • Zarfeshany A.
        • Asgary S.
        • Javanmard S.H.
        Potent health effects of pomegranate.
        Adv Biomed Res. 2014; 3: 100
        • Panth N.
        • Manandhar B.
        • Paudel K.R.
        Anticancer activity of Punica granatum (pomegranate): a review.
        Phyther Res. 2017; 31: 568-578
        • Paller C.J.
        • Pantuck A.
        • Carducci M.A.
        A review of pomegranate in prostate cancer.
        Prostate Cancer Prostatic Dis. 2017; 20: 265-270
        • Shah T.A.
        • Parikh M.
        • Patel K.V.
        • Patel K.G.
        • Joshi C.G.
        • Gandhi T.R.
        Evaluation of the effect of Punica granatum juice and punicalagin on NFκB modulation in inflammatory bowel disease.
        Mol Cell Biochem. 2016; 419: 65-74
        • Coursodon-Boyiddle C.F.
        • Snarrenberg C.L.
        • Adkins-Rieck C.K.
        • et al.
        Pomegranate seed oil reduces intestinal damage in a rat model of necrotizing enterocolitis.
        Am J Physiol Gastrointest Liver Physiol. 2012; 303: G744-G751
        • Jurenka J.S.
        Therapeutic applications of pomegranate (Punica granatum L): a review.
        Altern Med Rev. 2008; 13: 128-144
        • Stowe C.B.
        The effects of pomegranate juice consumption on blood pressure and cardiovascular health.
        Complement Ther Clin Pract. 2011; 17: 113-115
        • Chen B.
        • Tuuli M.G.
        • Longtine M.S.
        • et al.
        Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts.
        Am J Physiol Endocrinol Metab. 2012; 302: E1142-E1152
        • Kim Y.E.
        • Hwang C.J.
        • Lee H.P.
        • et al.
        Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB.
        Neuropharmacology. 2017; 117: 21-32
        • West T.
        • Atzeva M.
        • Holtzman D.M.
        Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury.
        Dev Neurosci. 2007; 29: 363-372
        • Tapias V.
        • Cannon J.R.
        • Greenamyre J.T.
        Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson’s disease.
        Neurobiol Aging. 2014; 35: 1162-1176
        • Ahmed M.A.E.
        • El Morsy E.M.
        • Ahmed A.A.E.
        Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.
        Life Sci. 2014; 110: 61-69
        • Amri Z.
        • Ghorbel A.
        • Turki M.
        • et al.
        Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model.
        BMC Complement Altern Med. 2017; 17: 339
        • Loren D.J.
        • Seeram N.P.
        • Schulman R.N.
        • Holtzman D.M.
        Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury.
        Pediatr Res. 2005; 57: 858-864
        • Gayle D.A.
        • Beloosesky R.
        • Desai M.
        • Amidi F.
        • Nuñez S.E.
        • Ross M.G.
        Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain.
        Am J Physiol Regul Integr Comp Physiol. 2004; 286: R1024-R1029
        • Beloosesky R.
        • Maravi N.
        • Weiner Z.
        • et al.
        Maternal lipopolysaccharide-induced inflammation during pregnancy programs impaired offspring innate immune responses.
        Am J Obstet Gynecol. 2010; 203: 185.e1-185.e4
        • Ginsberg Y.
        • Lotan P.
        • Khatib N.
        • et al.
        Maternal lipopolysaccharide alters the newborn oxidative stress and C-reactive protein levels in response to an inflammatory stress.
        J Dev Orig Health Dis. 2012; 3: 358-363
        • Akhtar F.
        • Rouse C.A.
        • Catano G.
        • et al.
        Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress.
        J Neuroinflammation. 2017; 14: 195
        • Bell M.J.
        • Hallenbeck J.M.
        Effects of intrauterine inflammation on developing rat brain.
        J Neurosci Res. 2002; 70: 570-579
        • Cai Z.
        • Pan Z.L.
        • Pang Y.
        • Evans O.B.
        • Rhodes P.G.
        Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration.
        Pediatr Res. 2000; 47: 64-72
        • Beloosesky R.
        • Khatib N.
        • Ginsberg Y.
        • et al.
        Maternal magnesium sulfate fetal neuroprotective effects to the fetus: Inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation in a rodent model.
        Am J Obstet Gynecol. 2016; 215: 382.e1-382.e6
        • Ginsberg Y.
        • Khatib N.
        • Weiss B.
        • et al.
        Magnesium sulfate (MG) prevents maternal inflammation induced offspring cerebral injury evident on MRI but not via IL-1β.
        Neuroscience. 2017; 353: 98-105
        • Lamhot V.B.
        • Khatib N.
        • Ginsberg Y.
        • et al.
        Magnesium sulfate prevents maternal inflammation-induced impairment of learning ability and memory in rat offspring.
        Am J Obstet Gynecol. 2015; 213: 851.e1-851.e8
        • Beloosesky R.
        • Ginsberg Y.
        • Khatib N.
        • et al.
        Prophylactic maternal N-acetylcysteine in rats prevents maternal inflammation–induced offspring cerebral injury shown on magnetic resonance imaging.
        Am J Obstet Gynecol. 2013; 208: 213.e1-213.e6
        • Beloosesky R.
        • Gayle D.A.
        • Ross M.G.
        Maternal N-acetylcysteine suppresses fetal inflammatory cytokine responses to maternal lipopolysaccharide.
        Am J Obstet Gynecol. 2006; 195: 1053-1057
        • Beloosesky R.
        • Weiner Z.
        • Ginsberg Y.
        • Ross M.G.
        Maternal N-acetyl-cysteine (NAC) protects the rat fetal brain from inflammatory cytokine responses to lipopolysaccharide (LPS).
        J Matern Fetal Neonatal Med. 2012; 25: 1324-1328
        • Beloosesky R.
        • Weiner Z.
        • Khativ N.
        • et al.
        Prophylactic maternal n-acetylcysteine before lipopolysaccharide suppresses fetal inflammatory cytokine responses.
        Am J Obstet Gynecol. 2009; 200: 665.e1-665.e5
        • Pressler R.
        • Auvin S.
        Comparison of brain maturation among species: an example in translational research suggesting the possible use of bumetanide in newborn.
        Front Neurol. 2013; 4: 36
        • DaSilva N.A.
        • Nahar P.P.
        • Ma H.
        • et al.
        Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro.
        Nutr Neurosci. 2017; : 1-11
        • Sahebkar A.
        • Ferri C.
        • Giorgini P.
        • Bo S.
        • Nachtigal P.
        • Grassi D.
        Effects of pomegranate juice on blood pressure: a systematic review and meta-analysis of randomized controlled trials.
        Pharmacol Res. 2017; 115: 149-161
        • Xu J.
        • Zhao Y.
        • Aisa H.A.
        Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages.
        Pharm Biol. 2017; 55: 2095-2101
        • Campos S.M.N.
        • de Oliveira V.L.
        • Lessa L.
        • et al.
        Maternal immunomodulation of the offspring’s immunological system.
        Immunobiology. 2014; 219: 813-821
        • Haseeb A.
        • Khan N.M.
        • Ashruf O.S.
        • Haqqi T.M.
        A polyphenol-rich pomegranate fruit extract suppresses NF-κB and IL-6 expression by blocking the activation of IKKβ and NIK in primary human chondrocytes.
        Phyther Res. 2017; 31: 778-782
        • Zielinsky P.
        • Piccoli A.L.
        • Manica J.L.L.
        • et al.
        Reversal of fetal ductal constriction after maternal restriction of polyphenol-rich foods: an open clinical trial.
        J Perinatol. 2012; 32: 574-579
        • Zielinsky P.
        • Piccoli A.L.
        • Manica J.L.
        • et al.
        Maternal consumption of polyphenol-rich foods in late pregnancy and fetal ductus arteriosus flow dynamics.
        J Perinatol. 2010; 30: 17-21
        • Zielinsky P.
        • Busato S.
        Prenatal effects of maternal consumption of polyphenol-rich foods in late pregnancy upon fetal ductus arteriosus.
        Birth Defects Res C Embryo Today. 2013; 99: 256-274
        • Hahn M.
        • Baierle M.
        • Charão M.F.
        • et al.
        Polyphenol-rich food general and on pregnancy effects: a review.
        Drug Chem Toxicol. 2017; 40: 368-374
        • Bubols G.B.
        • Zielinsky P.
        • Piccoli A.L.
        • et al.
        Nitric oxide and reactive species are modulated in the polyphenol-induced ductus arteriosus constriction in pregnant sheep.
        Prenat Diagn. 2014; 34: 1268-1276