Comment on: Preventing preeclampsia with aspirin: does dose or timing matter?

TO THE EDITORS: Tong et al 1 state that possible biological mechanism of action of aspirin in the prevention of preeclampsia are that it: (1) "facilitates early placental embedding, a process that is in fact poorly understood but is likely to be complete by 16 weeks’ gestation"; and/or (2) also increases prostacyclin (vasodilator); and/or (3) may decrease endothelial (blood vessel) dysfunction. 1 Tong et al 1 do not mention the effect of aspirin on platelets. By the inhibition of prostaglandin synthetase, aspirin blocks the production of thromboxane, the mediator of platelet activity. Thus aspirin renders the platelets nonfunctional and hence maintains circulation in small diseased blood vessels.

As far as placentation is concerned: “the spiral arteries after being breached by the non-villus trophoblast, undergo extensive adaptations and structural alterations in order to provide the intervillous space of the growing placenta with an adequate amount of maternal blood.” 2 This process they termed “physiological change.”

“From 15 or 16 weeks’ gestation, there seems to be a wave of intra-arterial trophoblast migration beyond the deciduomymometrial junction into the true myometrial segments of the spiral arteries.” 3

We used color Doppler ultrasound to describe the changes in the uteroplacental circulation in the midtrimester of nulliparous pregnancy observing and quantitating the development of a low-resistance circulation. 4 We found that the indices of flow fell from 14-18 weeks and fell even further from 18-24 weeks.

Failure of this process of physiological change in the spiral arteries of the placental bed is found in cases of preeclampsia and intrauterine growth restriction without preeclampsia. Thus the earliest known feature of preeclampsia, the failure of physiological change in the spiral arterioles, is probably an event predominantly of the second trimester.

These spiral arterioles, where physiological change has not occurred, can then undergo atheromatous-like disease termed “acute atherosis.” 5 This results in a further restriction of blood flow and even complete vascular occlusion. 2

Our uterine artery Doppler observations of patients at high risk of preeclampsia at 12 weeks’ gestation 6 were that both patients treated with aspirin and those not treated showed a reduction in uteroplacental resistance toward the expected median at 24 weeks’ gestation. Also there was no significant difference between the observational and aspirin-treated cohorts. These observations would tend to indicate that aspirin does not have an effect on the failure of the normal physiological change of the spiral arterioles. Hence any effect on the uteroplacental circulation is more likely to be in the prevention of acute atherosis probably via its action on platelets.

Roger A. McMaster-Fay, MB BS
Department of Obstetrics and Gynecology
Faculty of Medicine
Central Clinical
University of Sydney
Sydney, Australia
roger@rfay.com.au

Jonathan A. Hyett, MD, BS BSc
Department of Obstetrics and Gynecology
Faculty of Medicine
Central Clinical
University of Sydney
Sydney, Australia
The authors report no conflict of interest.

REFERENCES

© 2017 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ajog.2017.05.014

REPLY

We thank McMaster-Fay and Hyett 1 for their comment on our editorial 2 that discussed 2 meta-analyses. 3,4 Their comment was not directed at our interpretation of these important studies but rather, at our brief preamble where we
Letters to the Editors

Pelvic floor trauma and maternal age

TO THE EDITORS: We read with interest the recent publication by Rahmanou et al1 that found risk of pelvic floor trauma increased with maternal age. We reviewed our database of >126,000 births in the years 2003 through 2015 and found that was not the case in our population. There were 25,942 primiparae with spontaneous or instrumental vaginal deliveries; among them, there were 262 cases of third- to fourth-degree tears (1.0%). We examined the rate of obstetric anal sphincter injuries in successive cohorts of maternal age at delivery from 16-45 years. The figure shows that the rate of third- to fourth-degree tears was fairly steady in all age cohorts, ranging from 0.2-2.3%, and was nil in some small cohorts.

We speculate that the age distribution of our large patient cohort as well as different delivery ward protocols may account for the difference between our results and those of Rahmanou and colleagues.1 Their results may not reflect the age distribution of obstetric anal sphincter injuries in other populations.

Stephen Tong, PhD
Mercy Perinatal, Mercy Hospital for Women
Department of Obstetrics and Gynecology
University of Melbourne, Mercy Hospital
Victoria, Australia
stong@unimelb.edu.au

Ben W. Mol, PhD
Robinson Institute, School of Medicine
University of Adelaide and South Australian Health and Medical Research Institute
Adelaide, Australia

Susan P. Walker, MD
Mercy Perinatal, Mercy Hospital for Women
Department of Obstetrics and Gynecology
University of Melbourne, Mercy Hospital
Victoria, Australia

The authors report no conflict of interest.

REFERENCES


© 2017 Published by Elsevier Inc. http://dx.doi.org/10.1016/j.ajog.2017.05.015