Advertisement

Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta

Published:December 26, 2016DOI:https://doi.org/10.1016/j.ajog.2016.12.029

      Background

      Failure of physiologic transformation of spiral arteries has been reported in preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-like lesions of heart transplantation, and is considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are more resistant to trophoblast displacement than nonactivated endothelium, and may contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic transformation.

      Objective

      We sought to determine whether failure of spiral artery physiologic transformation was associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium and presence of acute atherosis in the placental basal plate.

      Study Design

      A cross-sectional study of 123 placentas (19-42 weeks’ gestation) obtained from normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) was performed. Failure of spiral artery physiologic transformation and presence of cell activation was determined using immunohistochemistry of placental basal plates containing a median of 4 (minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was defined by the expression of intercellular adhesion molecule-1. Investigators examining microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta groups were performed with Fisher exact test and Wilcoxon rank sum test using a Bonferroni-adjusted level of significance (.025).

      Results

      We found that 87% (94/108) of placentas having spiral arteries with failure of physiologic transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of placentas having only spiral arteries with complete physiologic transformation (cytokeratin-positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts reactive with the intercellular adhesion molecule-1 activation marker (P < .001). A significant correlation (R2 = 0.84) was found between expression of spiral artery endothelial and interstitial extravillous trophoblast intercellular adhesion molecule-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of placentas with complete and/or partial failure of physiologic transformation of spiral arteries that were intercellular adhesion molecule-1-positive, in none of the 14 placentas with failure of physiologic transformation that were intercellular adhesion molecule-1-negative, and in none of the 15 placentas with complete spiral artery physiologic transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were identified in placentas having concomitant spiral artery endothelial and interstitial extravillous trophoblast activation.

      Conclusion

      Failure of spiral artery physiologic transformation in the placental basal plate is associated with interstitial extravillous trophoblast and arterial endothelial activation along with increased frequency of spiral artery atherosis. These findings may be used to improve the characterization of different disorders of the placental bed such as in refining the existing tools for the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brosens I.
        • Robertson W.B.
        • Dixon H.G.
        The physiological response of the vessels of the placental bed to normal pregnancy.
        J Pathol Bacteriol. 1967; 93: 569-579
        • De Wolf F.
        • Robertson W.B.
        • Brosens I.
        The ultrastructure of acute atherosis in hypertensive pregnancy.
        Am J Obstet Gynecol. 1975; 123: 164-174
        • Brosens I.
        • Khong T.Y.
        Defective spiral artery remodeling.
        in: Pijnenborg R. Brosens I. Romero R. Placental bed disorders. 1st ed. Cambridge University Press, New York, NY2010: 11-21
        • Whitley G.S.
        • Cartwright J.E.
        Cellular and molecular regulation of spiral artery remodeling: lessons from the cardiovascular field.
        Placenta. 2010; 31: 465-474
        • Osol G.
        • Mandala M.
        Maternal uterine vascular remodeling during pregnancy.
        Physiology (Bethesda). 2009; 24: 58-71
        • Osol G.
        • Moore L.G.
        Maternal uterine vascular remodeling during pregnancy.
        Microcirculation. 2014; 21: 38-47
        • Burton G.J.
        • Woods A.W.
        • Jauniaux E.
        • Kingdom J.C.P.
        Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy.
        Placenta. 2009; 30: 473-482
        • Robertson W.B.
        • Brosens I.
        • Dixon G.
        Uteroplacental vascular pathology.
        Eur J Obstet Gynecol Reprod Biol. 1975; 5: 47-65
        • Pijnenborg R.
        • Bland J.M.
        • Robertson W.B.
        • et al.
        Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy.
        Placenta. 1983; 4: 397-413
        • Craven C.M.
        • Morgan T.
        • Ward K.
        Decidual spiral artery remodeling begins before cellular interaction with cytotrophoblasts.
        Placenta. 1998; 19: 241-252
        • Staff A.C.
        • Dechend R.
        • Pijnenborg R.
        Learning from the placenta: acute atherosis and vascular remodeling in preeclampsia-novel aspects for atherosclerosis and future cardiovascular health.
        Hypertension. 2010; 56: 1026-1034
        • Smith S.D.
        • Dunk C.E.
        • Aplin J.D.
        • et al.
        Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy.
        Am J Pathol. 2009; 174: 1959-1971
        • Harris L.K.
        Review: trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel.
        Placenta. 2010; 31: S93-S98
        • Hazan A.D.
        • Smith S.D.
        • Jones R.L.
        • et al.
        Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro.
        Am J Pathol. 2010; 177: 1017-1030
        • Lash G.E.
        • Otun H.A.
        • Innes B.A.
        • et al.
        Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age.
        Hum Reprod. 2010; 25: 1137-1145
        • Harris L.K.
        IFPA Gabor Than Award Lecture: Transformation of the spiral arteries in human pregnancy: key events in the remodeling timeline.
        Placenta. 2011; 32: S154-S158
        • Robson A.
        • Harris L.K.
        • Innes B.A.
        • et al.
        Uterine natural killer cells initiate spiral artery remodeling in human pregnancy.
        FASEB J. 2012; 26: 4876-4885
        • Tessier D.R.
        • Yockell-Lelievre J.
        • Gruslin A.
        Uterine spiral artery remodeling: the role of uterine natural killer cells and extravillous trophoblasts in normal and high-risk human pregnancies.
        Am J Reprod Immunol. 2015; 74: 1-11
        • Pijnenborg R.
        • Vercruysse L.
        • Hanssens M.
        The uterine spiral arteries in human pregnancy: facts and controversies.
        Placenta. 2006; 27: 939-958
        • Espinoza J.
        • Romero R.
        • Mee Kim Y.
        • et al.
        Normal and abnormal transformation of the spiral arteries during pregnancy.
        J Perinat Med. 2006; 34: 447-458
        • Brosens I.
        • Pijnenborg R.
        • Vercruysse L.
        • et al.
        The “great obstetrical syndromes” are associated with disorders of deep placentation.
        Am J Obstet Gynecol. 2011; 204: 193-201
        • Brosens I.
        The placental bed [thesis].
        University of London, London1965
        • Brosens I.
        • Dixon H.G.
        The anatomy of the maternal side of the placenta.
        J Obstet Gynaecol Br Commonw. 1966; 73: 357-363
        • Brosens I.
        • Derwig I.
        • Brosens J.
        • et al.
        The enigmatic uterine junctional zone: the missing link between reproductive disorders and major obstetrical disorders?.
        Hum Reprod. 2010; 25: 569-574
        • Khong Y.
        • Brosens I.
        Defective deep placentation.
        Best Pract Res Clin Obstet Gynaecol. 2011; 25: 301-311
        • Pijnenborg R.
        • Vercruysse L.
        • Brosens I.
        Deep placentation.
        Best Pract Res Clin Obstet Gynaecol. 2011; 25: 273-285
        • Brosens I.
        • Benagiano G.
        • Brosens J.J.
        The potential perinatal origin of placentation disorders in the young primigravida.
        Am J Obstet Gynecol. 2015; 212: 580-585
        • Khong T.Y.
        • Liddell H.S.
        • Robertson W.B.
        Defective hemochorial placentation as a cause of miscarriage: a preliminary study.
        Br J Obstet Gynaecol. 1987; 94: 649-655
        • Michel M.Z.
        • Khong T.Y.
        • Clark D.A.
        • et al.
        A morphological and immunological study of human placental bed biopsies in miscarriage.
        Br J Obstet Gynaecol. 1990; 97: 984-988
        • Ball E.
        • Bulmer J.N.
        • Ayis S.
        • et al.
        Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion.
        J Pathol. 2006; 208: 535-542
        • Dommisse J.
        • Tiltman A.J.
        Placental bed biopsies in placental abruption.
        Br J Obstet Gynaecol. 1992; 99: 651-654
        • Brosens I.A.
        • Robertson W.B.
        • Dixon H.G.
        The role of the spiral arteries in the pathogenesis of preeclampsia.
        Obstet Gynecol Annu. 1972; 1: 177-191
        • Labarrere C.
        • Althabe O.
        Chronic villitis of unknown etiology and maternal arterial lesions in preeclamptic pregnancies.
        Eur J Obstet Gynecol Reprod Biol. 1985; 20: 1-11
        • Khong T.Y.
        • De Wolf F.
        • Robertson W.B.
        • et al.
        Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants.
        Br J Obstet Gynaecol. 1986; 93: 1049-1059
        • Althabe O.
        • Labarrere C.
        • Telenta M.
        Maternal vascular lesions in placentae of small-for-gestational-age infants.
        Placenta. 1985; 6: 265-276
        • Kim Y.M.
        • Bujold E.
        • Chaiworapongsa T.
        • et al.
        Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes.
        Am J Obstet Gynecol. 2003; 189: 1063-1069
        • Arias F.
        • Rodriquez L.
        • Rayne S.C.
        • et al.
        Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes.
        Am J Obstet Gynecol. 1993; 168: 585-591
        • Kim Y.M.
        • Chaiworapongsa T.
        • Gomez R.
        • et al.
        Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes.
        Am J Obstet Gynecol. 2002; 187: 1137-1142
        • Labarrere C.A.
        • Catoggio L.J.
        • Mullen E.G.
        • et al.
        Placental lesions in maternal autoimmune diseases.
        Am J Reprod Immunol Microbiol. 1986; 12: 78-86
        • Lyall F.
        • Robson S.C.
        • Bulmer J.N.
        Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction. Relationship to clinical outcome.
        Hypertension. 2013; 62: 1046-1054
        • Labarrere C.
        • Althabe O.
        Chronic villitis of unknown etiology and decidual maternal vasculopathies in sustained chronic hypertension.
        Eur J Obstet Gynecol Reprod Biol. 1986; 21: 27-32
        • Labarrere C.A.
        • Althabe O.H.
        Inadequate maternal vascular response to placentation in pregnancies complicated by preeclampsia and small-for-gestational-age infants.
        Br J Obstet Gynaecol. 1987; 94: 1113-1118
        • Labarrere C.A.
        Acute atherosis. A histopathological hallmark of immune aggression?.
        Placenta. 1988; 9: 95-108
        • Labarrere C.A.
        • Faulk W.P.
        Antigenic identification of cells in spiral artery trophoblastic invasion: validation of histologic studies by triple-antibody immunocytochemistry.
        Am J Obstet Gynecol. 1994; 171: 165-171
        • Avagliano L.
        • Bulfamante G.P.
        • Morabito A.
        • Marconi A.M.
        Abnormal spiral artery remodeling in the decidual segment during pregnancy: from histology to clinical correlation.
        J Clin Pathol. 2011; 64: 1064-1068
        • Libby P.
        • Ridker P.M.
        • Maseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105: 1135-1143
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Young J.L.
        • Libby P.
        • Schonbeck U.
        Cytokines in the pathogenesis of atherosclerosis.
        Thromb Haemost. 2002; 88: 554-567
        • Hansson G.K.
        • Libby P.
        The immune response in atherosclerosis: a double-edged sword.
        Nat Rev Immunol. 2006; 6: 508-519
        • Libby P.
        Inflammatory mechanisms: the molecular basis of inflammation and disease.
        Nutr Rev. 2007; 65: S140-S146
        • Rocha V.Z.
        • Libby P.
        Obesity, inflammation, and atherosclerosis.
        Nat Rev Cardiol. 2009; 6: 399-409
        • Galkina E.
        • Ley K.
        Immune and inflammatory mechanisms of atherosclerosis (*).
        Annu Rev Immunol. 2009; 27: 165-197
        • Libby P.
        • Okamoto Y.
        • Rocha V.Z.
        • et al.
        Inflammation in atherosclerosis: transition from theory to practice.
        Circ J. 2010; 74: 213-220
        • Brosens I.
        • Renaer M.
        On the pathogenesis of placental infarcts in pre-eclampsia.
        J Obstet Gynaecol Br Commonw. 1972; 79: 794-799
        • Brosens I.A.
        Morphological changes in the utero-placental bed in pregnancy hypertension.
        Clin Obstet Gynaecol. 1977; 4: 573-593
        • Kaufmann P.
        • Black S.
        • Huppertz B.
        Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia.
        Biol Reprod. 2003; 69: 1-7
        • Chaiworapongsa T.
        • Chaemsaithong P.
        • Yeo L.
        • et al.
        Pre-eclampsia part 1: current understanding of its pathophysiology.
        Nat Rev Nephrol. 2014; 10: 466-480
        • Cotechini T.
        • Komisarenko M.
        • Sperou A.
        • et al.
        Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia.
        J Exp Med. 2014; 211: 165-179
        • Sacks G.P.
        • Studena K.
        • Sargent K.
        • et al.
        Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis.
        Am J Obstet Gynecol. 1998; 179: 80-86
        • Redman C.W.
        • Sacks G.P.
        • Sargent I.L.
        Preeclampsia: an excessive maternal inflammatory response to pregnancy.
        Am J Obstet Gynecol. 1999; 180: 499-506
        • Gervasi M.T.
        • Chaiworapongsa T.
        • Pacora P.
        • et al.
        Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia.
        Am J Obstet Gynecol. 2001; 185: 792-797
        • Lau S.Y.
        • Guild S.J.
        • Barrett C.J.
        • et al.
        Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis.
        Am J Reprod Immunol. 2013; 70: 412-427
        • Boyd E.M.
        The lipemia of pregnancy.
        J Clin Invest. 1934; 13: 347-363
        • Potter J.M.
        • Nestel P.J.
        The hyperlipidemia of pregnancy in normal and complicated pregnancies.
        Am J Obstet Gynecol. 1979; 133: 165-170
        • Hubel C.A.
        • McLaughlin M.K.
        • Evans R.W.
        • et al.
        Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum.
        Am J Obstet Gynecol. 1996; 174: 975-982
        • Baker A.M.
        • Klein R.L.
        • Moss K.L.
        • et al.
        Maternal serum dyslipidemia occurs early in pregnancy in women with mild but not severe preeclampsia.
        Am J Obstet Gynecol. 2009; 201: 293.e1-293.e4
        • Belo L.
        • Santos-Silva A.
        • Quintanilha A.
        • et al.
        Similarities between pre-eclampsia and atherosclerosis: a protective effect of physical exercise?.
        Curr Med Chem. 2008; 15: 2223-2229
        • Roberts J.M.
        • Redman C.W.
        Pre-eclampsia: more than pregnancy-induced hypertension.
        Lancet. 1993; 341: 1447-1451
        • Lain K.Y.
        • Roberts J.M.
        Contemporary concepts of the pathogenesis and management of preeclampsia.
        JAMA. 2002; 287: 3183-3186
        • Coelho T.M.
        • Sass N.
        • Camano L.
        • et al.
        Microvessel density in the placental bed among preeclampsia patients.
        Sao Paulo Med J. 2006; 124: 96-100
        • Labarrere C.A.
        • Nelson D.R.
        • Faulk W.P.
        Endothelial activation and development of coronary artery disease in transplanted human hearts.
        JAMA. 1997; 278: 1169-1175
        • Labarrere C.A.
        • Nelson D.R.
        • Miller S.J.
        • et al.
        Value of serum-soluble intercellular adhesion molecule-1 for the noninvasive risk assessment of transplant coronary artery disease, posttransplant ischemic events, and cardiac graft failure.
        Circulation. 2000; 102: 1549-1555
        • Labarrere C.A.
        • Lee J.B.
        • Nelson D.R.
        • et al.
        C-reactive protein, arterial endothelial activation, and development of transplant coronary artery disease: a prospective study.
        Lancet. 2002; 360: 1462-1467
        • Labarrere C.A.
        • Jaeger B.R.
        Biomarkers of heart transplant rejection: the good, the bad, and the ugly!.
        Transl Res. 2012; 159: 238-251
        • Labarrere C.A.
        • Woods J.R.
        • Hardin J.W.
        • et al.
        Value of the first post-transplant biopsy for predicting long-term cardiac allograft vasculopathy (CAV) and graft failure in heart transplant patients.
        PLoS One. 2012; 7: e36100
        • Labarrere C.A.
        • Woods J.R.
        • Hardin J.W.
        • et al.
        Early inflammatory markers are independent predictors of cardiac allograft vasculopathy in heart-transplant recipients.
        PLoS One. 2014; 9: e113260
        • Schnoor M.
        • Alcaide P.
        • Voisin M.-B.
        • van Buul J.D.
        Crossing the vascular wall: common and unique mechanisms exploited by different leukocyte subsets during extravasation.
        Mediators Inflamm. 2015; 2015: 946509
        • Gerhardt T.
        • Ley K.
        Monocyte trafficking across the vessel wall.
        Cardiovasc Res. 2015; 107: 321-330
        • Labarrere C.A.
        • Zaloga G.P.
        C-reactive protein: from innocent bystander to pivotal mediator of atherosclerosis.
        Am J Med. 2004; 117: 499-507
        • Roberts J.M.
        • Taylor R.N.
        • Musci T.J.
        • et al.
        Preeclampsia: an endothelial cell disorder.
        Am J Obstet Gynecol. 1989; 161: 1200-1204
        • Roberts J.M.
        • Edep M.E.
        • Goldfien A.
        • et al.
        Sera from preeclamptic women specifically activate human umbilical vein endothelial cells in vitro: morphological and biochemical evidence.
        Am J Reprod Immunol. 1992; 27: 101-108
        • Wang Y.
        • Zhang Y.
        • Lewis D.F.
        • et al.
        Protease chymotrypsin mediates the endothelial expression of P- and E-selectin, but not ICAM and VCAM, induced by placental trophoblasts from pre-eclamptic pregnancies.
        Placenta. 2003; 24: 851-861
        • Wang X.
        • Athayde N.
        • Trudinger B.
        Microvascular endothelial cell activation is present in the umbilical placental microcirculation in fetal placental vascular disease.
        Am J Obstet Gynecol. 2004; 190: 596-601
        • Chen Q.
        • Guo F.
        • Hensby-Bennett S.
        • et al.
        Antiphospholipid antibodies prolong the activation of endothelial cells induced by necrotic trophoblastic debris: implications for the pathogenesis of preeclampsia.
        Placenta. 2012; 33: 810-815
        • Chen Q.
        • Guo F.
        • Liu S.
        • et al.
        Calcium channel blockers prevent endothelial cell activation in response to necrotic trophoblast debris: possible relevance to pre-eclampsia.
        Cardiovasc Res. 2012; 96: 484-493
        • Shen F.
        • Wei J.
        • Snowise S.
        • et al.
        Trophoblast debris extruded from preeclamptic placentae activates endothelial cells: a mechanism by which the placenta communicates with the maternal endothelium.
        Placenta. 2014; 35: 839-847
        • Chen Q.
        • Stone P.R.
        • McCowan L.M.
        • et al.
        Activated endothelial cells resist displacement by trophoblast in vitro.
        Placenta. 2007; 28: 743-747
        • Oken E.
        • Kleinman K.P.
        • Rich-Edwards J.
        • Gillman M.W.
        A nearly continuous measure of birth weight for gestational age using a United States national reference.
        BMC Pediatr. 2003; 3: 6
        • Juge-Aubry C.E.
        • Henrichot E.
        • Meier C.A.
        Adipose tissue: a regulator of inflammation.
        Best Pract Res Clin Endocrinol Metab. 2005; 19: 547-566
        • Benirschke K.
        • Burton G.J.
        • Baergen R.N.
        Pathology of the human placenta.
        Springer-Verlag, Heidelberg (Germany)2012
        • Labarrere C.A.
        • Faulk W.P.
        Intercellular adhesion molecule-1 (ICAM-1) and HLA-DR antigens are expressed on endovascular cytotrophoblasts in abnormal pregnancies.
        Am J Reprod Immunol. 1995; 33: 47-53
        • Reister F.
        • Frank H.G.
        • Heyl W.
        • et al.
        The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differs from that in healthy patients.
        Placenta. 1999; 20: 229-233
        • DiFederico E.
        • Genbacev O.
        • Fisher S.J.
        Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall.
        Am J Pathol. 1999; 155: 293-301
        • Pijnenborg R.
        • McLaughlin P.J.
        • Vercruysse L.
        • et al.
        Immunolocalization of tumor necrosis factor-alpha (TNF-alpha) in the placental bed of normotensive and hypertensive human pregnancies.
        Placenta. 1998; 19: 231-239
        • Harsem N.K.
        • Roald B.
        • Braekke K.
        • et al.
        Acute atherosis in decidual tissue: not associated with systemic oxidative stress in preeclampsia.
        Placenta. 2007; 28: 958-964
        • Staff A.C.
        • Dechend R.
        • Redman C.W.
        Review: preeclampsia, acute atherosis of the spiral arteries and future cardiovascular disease: two new hypotheses.
        Placenta. 2013; 34: S73-S78
        • Staff A.C.
        • Johnsen G.M.
        • Dechend R.
        • et al.
        Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors.
        J Reprod Immunol. 2014; 101-102: 120-126
        • Hiby S.E.
        • Walker J.J.
        • O'Shaughnessy K.M.
        • et al.
        Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success.
        J Exp Med. 2004; 200: 957-965
        • Moffett A.
        • Loke C.
        Immunology of placentation in eutherian mammals.
        Nat Rev Immunol. 2006; 6: 584-594
        • Moffett A.
        • Hiby S.E.
        How does the maternal immune system contribute to the development of pre-eclampsia?.
        Placenta. 2007; 28: S51-S56
        • Redman C.W.
        • Sargent I.L.
        Immunology of pre-eclampsia.
        Am J Reprod Immunol. 2010; 63: 534-543
        • Tilburgs T.
        • Scherjon S.A.
        • van der Mast B.J.
        • et al.
        Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells.
        J Reprod Immunol. 2009; 82: 148-157
        • Young J.
        The etiology of eclampsia and albuminuria and their relation to accidental hemorrhage: (an anatomical and experimental investigation).
        Proc R Soc Med. 1914; 7: 307-348
        • Bujold E.
        • Romero R.
        • Chaiworapongsa T.
        • et al.
        Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin.
        J Matern Fetal Neonatal Med. 2005; 18: 9-16
        • Gilbert J.S.
        • Babcock S.A.
        • Granger J.P.
        Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression.
        Hypertension. 2007; 50: 1142-1147
        • Makris A.
        • Thornton C.
        • Thompson J.
        • et al.
        Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1.
        Kidney Int. 2007; 71: 977-984
        • Kusanovic J.P.
        • Romero R.
        • Chaiworapongsa T.
        • et al.
        A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia.
        J Matern Fetal Neonatal Med. 2009; 22: 1021-1038
        • Verlohren S.
        • Galindo A.
        • Schlembach D.
        • et al.
        An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia.
        Am J Obstet Gynecol. 2010; 202: 161.e1-161.e11
        • Vaisbuch E.
        • Whitty J.E.
        • Hassan S.S.
        • et al.
        Circulating angiogenic and antiangiogenic factors in women with eclampsia.
        Am J Obstet Gynecol. 2011; 204: 152.e1-152.e9
        • Soto E.
        • Romero R.
        • Kusanovic J.P.
        • et al.
        Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion.
        J Matern Fetal Neonatal Med. 2012; 25: 498-507
        • McElrath T.F.
        • Lim K.H.
        • Pare E.
        • et al.
        Longitudinal evaluation of predictive value for preeclampsia of circulating angiogenic factors through pregnancy.
        Am J Obstet Gynecol. 2012; 207: 407.e1-407.e7
        • Wei S.Q.
        • Audibert F.
        • Luo Z.C.
        • et al.
        Maternal plasma 25-hydroxyvitamin D levels, angiogenic factors, and preeclampsia.
        Am J Obstet Gynecol. 2013; 208: 390.e1-390.e6
        • Maynard S.E.
        • Crawford S.L.
        • Bathgate S.
        • et al.
        Gestational angiogenic biomarker patterns in high risk preeclampsia groups.
        Am J Obstet Gynecol. 2013; 209: 53.e1-53.e9
        • Maynard S.E.
        • Min J.Y.
        • Merchan J.
        • et al.
        Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.
        J Clin Invest. 2003; 111: 649-658
        • Redman C.W.
        • Sargent I.L.
        Latest advances in understanding preeclampsia.
        Science. 2005; 308: 1592-1594
        • Roberts J.
        Pre-eclampsia a two-stage disorder: what is the linkage? Are there directed fetal/placental signals?.
        in: Lyall F. Belfort M. Pre-eclampsia: etiology and clinical practice. Cambridge University Press, New York2007: 183-194
        • Roberts J.M.
        • Hubel C.A.
        The two stage model of preeclampsia: variations on the theme.
        Placenta. 2009; 30: S32-S37
        • Venkatesha S.
        • Toporsian M.
        • Lam C.
        • et al.
        Soluble endoglin contributes to the pathogenesis of preeclampsia.
        Nat Med. 2006; 12: 642-649
        • Levine R.J.
        • Maynard S.E.
        • Qian C.
        • et al.
        Circulating angiogenic factors and the risk of preeclampsia.
        N Engl J Med. 2004; 350: 672-683
        • Chaiworapongsa T.
        • Romero R.
        • Espinoza J.
        • et al.
        Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award.
        Am J Obstet Gynecol. 2004; 190: 1541-1550
        • Chaiworapongsa T.
        • Romero R.
        • Kim Y.M.
        • et al.
        Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia.
        J Matern Fetal Neonatal Med. 2005; 17: 3-18
        • Widmer M.
        • Villar J.
        • Benigni A.
        • et al.
        Mapping the theories of preeclampsia and the role of angiogenic factors: a systematic review.
        Obstet Gynecol. 2007; 109: 168-180
        • Romero R.
        • Nien J.K.
        • Espinoza J.
        • et al.
        A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate.
        J Matern Fetal Neonatal Med. 2008; 21: 9-23
        • Erez O.
        • Romero R.
        • Espinoza J.
        • et al.
        The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age.
        J Matern Fetal Neonatal Med. 2008; 21: 279-287
        • Karumanchi S.A.
        • Stillman I.E.
        • Lindheimer M.D.
        Angiogenesis and preeclampsia.
        in: Lindheimer M.D. Roberts J.M. Cunningham F.G. Chesley's hypertensive disorders in pregnancy. 3rd ed. Elsevier, San Diego2009: 87-104
        • Espinoza J.
        • Uckele J.E.
        • Starr R.A.
        • et al.
        Angiogenic imbalances: the obstetric perspective.
        Am J Obstet Gynecol. 2010; 203: 17.e1-17.e8
        • Chaiworapongsa T.
        • Romero R.
        • Savasan Z.A.
        • et al.
        Maternal plasma concentrations of angiogenic/anti-angiogenic factors are of prognostic value in patients presenting to the obstetrical triage area with the suspicion of preeclampsia.
        J Matern Fetal Neonatal Med. 2011; 24: 1187-1207
        • Chaiworapongsa T.
        • Romero R.
        • Korzeniewski S.J.
        • et al.
        Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia.
        Am J Obstet Gynecol. 2013; 208: 287.e1-287.e15
        • Chaiworapongsa T.
        • Chaemsaithong P.
        • Korzeniewski S.J.
        • et al.
        Pre-eclampsia part 2: prediction, prevention and management.
        Nat Rev Nephrol. 2014; 10: 531-540
        • Ness R.B.
        • Roberts J.M.
        Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications.
        Am J Obstet Gynecol. 1996; 175: 1365-1370
        • Redman C.W.
        • Sargent I.L.
        Placental debris, oxidative stress and pre-eclampsia.
        Placenta. 2000; 21: 597-602
        • Redman C.W.
        • Sargent I.L.
        Pre-eclampsia, the placenta and the maternal systemic inflammatory response–a review.
        Placenta. 2003; 24: S21-S27
        • Redman C.W.
        • Tannetta D.S.
        • Dragovic R.A.
        • et al.
        Review: does size matter? Placental debris and the pathophysiology of pre-eclampsia.
        Placenta. 2012; 33: S48-S54
        • Rajakumar A.
        • Cerdeira A.S.
        • Rana S.
        • et al.
        Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia.
        Hypertension. 2012; 59: 256-264
        • Karumanchi S.A.
        • Bdolah Y.
        Hypoxia and sFlt-1 in preeclampsia: the “chicken-and-egg” question.
        Endocrinology. 2004; 145: 4835-4837
        • Ross R.
        Atherosclerosis–an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • Ross R.
        Atherosclerosis is an inflammatory disease.
        Am Heart J. 1999; 138: S419-S420
        • Vince G.S.
        • Starkey P.M.
        • Austgulen R.
        • et al.
        Interleukin-6, tumor necrosis factor and soluble tumor necrosis factor receptors in women with pre-eclampsia.
        Br J Obstet Gynaecol. 1995; 102: 20-25
        • Conrad K.P.
        • Miles T.M.
        • Benyo D.F.
        Circulating levels of immunoreactive cytokines in women with preeclampsia.
        Am J Reprod Immunol. 1998; 40: 102-111
        • Yudkin J.S.
        • Kumari M.
        • Humphries S.E.
        • et al.
        Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link?.
        Atherosclerosis. 2000; 148: 209-214
        • Teran E.
        • Escudero C.
        • Moya W.
        • et al.
        Elevated C-reactive protein and pro-inflammatory cytokines in Andean women with pre-eclampsia.
        Int J Gynaecol Obstet. 2001; 75: 243-249
        • Freeman D.J.
        • McManus F.
        • Brown E.A.
        • et al.
        Short- and long-term changes in plasma inflammatory markers associated with preeclampsia.
        Hypertension. 2004; 44: 708-714
        • Sharma A.
        • Satyam A.
        • Sharma J.B.
        Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women.
        Am J Reprod Immunol. 2007; 58: 21-30
        • Belo L.
        • Santos-Silva A.
        • Caslake M.
        • et al.
        Neutrophil activation and C-reactive protein concentration in preeclampsia.
        Hypertens Pregnancy. 2003; 22: 129-141
        • Braekke K.
        • Holthe M.R.
        • Harsem N.K.
        • et al.
        Calprotectin, a marker of inflammation, is elevated in the maternal but not in the fetal circulation in preeclampsia.
        Am J Obstet Gynecol. 2005; 193: 227-233
        • Ustun Y.
        • Engin-Ustun Y.
        • Kamaci M.
        Association of fibrinogen and C-reactive protein with severity of preeclampsia.
        Eur J Obstet Gynecol Reprod Biol. 2005; 121: 154-158
        • Greer I.A.
        • Haddad N.G.
        • Dawes J.
        • et al.
        Neutrophil activation in pregnancy-induced hypertension.
        Br J Obstet Gynaecol. 1989; 96: 978-982
        • Sattar N.
        • Greer I.A.
        Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening?.
        BMJ. 2002; 325: 157-160
        • Hermes W.
        • Franx A.
        • van Pampus M.G.
        • et al.
        Cardiovascular risk factors in women who had hypertensive disorders late in pregnancy: a cohort study.
        Am J Obstet Gynecol. 2013; 208: 474.e1-474.e8
        • Ahmed R.
        • Dunford J.
        • Mehran R.
        • et al.
        Pre-eclampsia and future cardiovascular risk among women: a review.
        J Am Coll Cardiol. 2014; 63: 1815-1822
        • Alsnes I.V.
        • Janszky I.
        • Forman M.R.
        • et al.
        A population-based study of associations between preeclampsia and later cardiovascular risk factors.
        Am J Obstet Gynecol. 2014; 211: 657.e1-657.e7
        • Reister F.
        • Frank H.G.
        • Kingdom J.C.
        • et al.
        Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women.
        Lab Invest. 2001; 81: 1143-1152
        • Labarrere C.A.
        • Ortiz M.A.
        • Sosa M.J.
        • et al.
        Syncytiotrophoblast intercellular adhesion molecule-1 expression in placental villitis of unknown cause.
        Am J Obstet Gynecol. 2005; 193: 483-488
        • Labarrere C.A.
        • Bammerlin E.
        • Hardin J.W.
        • et al.
        Intercellular adhesion molecule-1 expression in massive chronic intervillositis: implications for the invasion of maternal cells into fetal tissues.
        Placenta. 2014; 35: 311-317
        • Xiao J.
        • Garcia-Lloret M.
        • Winkler-Lowen B.
        • et al.
        ICAM-1-mediated adhesion of peripheral blood monocytes to the maternal surface of placental syncytiotrophoblasts: implications for placental villitis.
        Am J Pathol. 1997; 150: 1845-1860
        • Garcia-Lloret M.I.
        • Winkler-Lowen B.
        • Guilbert L.J.
        Monocytes adhering by LFA-1 to placental syncytiotrophoblasts induce local apoptosis via release of TNF-alpha. A model for hematogenous initiation of placental inflammations.
        J Leukoc Biol. 2000; 68: 903-908
        • Goksu Erol A.Y.
        • Nazli M.
        • Elis Yildiz S.
        Significance of platelet endothelial cell adhesion molecule-1 (PECAM-1) and intercellular adhesion molecule-1 (ICAM-1) expressions in preeclamptic placentae.
        Endocrine. 2012; 42: 125-131
        • Romero R.
        • Kusanovic J.P.
        • Chaiworapongsa T.
        • Hassan S.S.
        Placental bed disorders in preterm labor, preterm PROM, spontaneous abortion and abruptio placentae.
        Best Pract Res Clin Obstet Gynaecol. 2011; 25: 313-327
        • Kim Y.M.
        • Chaemsaithong P.
        • Romero R.
        • et al.
        The frequency of acute atherosis in normal pregnancy and preterm labor, preeclampsia, small-for-gestational age, fetal death and midtrimester spontaneous abortion.
        J Matern Fetal Neonatal Med. 2015; 28: 2001-2009
        • Romero R.
        • Kusanovic J.P.
        • Kim C.J.
        Placental bed disorders in the genesis of the great obstetrical syndromes.
        in: Pijnenborg R. Brosens I. Romero R. Placental bed disorders. Cambridge University Press, New York, NY2010: 271-289
        • Korzeniewski S.J.
        • Romero R.
        • Chaiworapongsa T.
        • et al.
        Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study.
        Am J Obstet Gynecol. 2016; 214: 629.e1-629.e17
        • Kim Y.M.
        • Chaemsaithong P.
        • Romero R.
        • et al.
        Placental lesions associated with acute atherosis.
        J Matern Fetal Neonatal Med. 2015; 28: 1554-1562
        • Kam E.P.
        • Gardner L.
        • Loke Y.W.
        • et al.
        The role of trophoblast in the physiological change in decidual spiral arteries.
        Hum Reprod. 1999; 14: 2131-2138
        • Erlebacher A.
        Why isn't the fetus rejected?.
        Curr Opin Immunol. 2001; 13: 590-593
        • Szekeres-Bartho J.
        Immunological relationship between the mother and the fetus.
        Int Rev Immunol. 2002; 21: 471-495
        • Trowsdale J.
        • Betz A.G.
        Mother's little helpers: mechanisms of maternal-fetal tolerance.
        Nat Immunol. 2006; 7: 241-246
        • Rowe J.H.
        • Ertelt J.M.
        • Xin L.
        • et al.
        Pregnancy imprints regulatory memory that sustains anergy to fetal antigen.
        Nature. 2012; 490: 102-106
        • Betz A.G.
        Immunology: tolerating pregnancy.
        Nature. 2012; 490: 47-48
        • Erlebacher A.
        Immunology of the maternal-fetal interface.
        Annu Rev Immunol. 2013; 31: 387-411
        • Sabatier F.
        • Bretelle F.
        • D'Ercole C.
        • et al.
        Neutrophil activation in preeclampsia and isolated intrauterine growth restriction.
        Am J Obstet Gynecol. 2000; 183: 1558-1563
        • Ogge G.
        • Romero R.
        • Chaiworapongsa T.
        • et al.
        Leukocytes of pregnant women with small-for-gestational age neonates have a different phenotypic and metabolic activity from those of women with preeclampsia.
        J Matern Fetal Neonatal Med. 2010; 23: 476-487
        • Gervasi M.T.
        • Chaiworapongsa T.
        • Naccasha N.
        • et al.
        Phenotypic and metabolic characteristics of maternal monocytes and granulocytes in preterm labor with intact membranes.
        Am J Obstet Gynecol. 2001; 185: 1124-1129
        • Gervasi M.T.
        • Chaiworapongsa T.
        • Naccasha N.
        • et al.
        Maternal intravascular inflammation in preterm premature rupture of membranes.
        J Matern Fetal Neonatal Med. 2002; 11: 171-175
        • Naccasha N.
        • Gervasi M.T.
        • Chaiworapongsa T.
        • et al.
        Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection.
        Am J Obstet Gynecol. 2001; 185: 1118-1123
        • Khong T.Y.
        • Mott C.
        Immunohistologic demonstration of endothelial disruption in acute atherosis in pre-eclampsia.
        Eur J Obstet Gynecol Reprod Biol. 1993; 51: 193-197
        • Khong T.Y.
        • Sawyer I.H.
        • Heryet A.R.
        An immunohistologic study of endothelialization of uteroplacental vessels in human pregnancy–evidence that endothelium is focally disrupted by trophoblast in preeclampsia.
        Am J Obstet Gynecol. 1992; 167: 751-756