Advertisement

High-fructose diet in pregnancy leads to fetal programming of hypertension, insulin resistance, and obesity in adult offspring

Published:April 06, 2016DOI:https://doi.org/10.1016/j.ajog.2016.03.038

      Background

      Consumption of fructose-rich diets in the United States is on the rise and thought to be associated with obesity and cardiometabolic diseases.

      Objective

      We sought to determine the effects of antenatal exposure to high-fructose diet on offspring’s development of metabolic syndrome–like phenotype and other cardiovascular disease risk factors later in life.

      Study Design

      Pregnant C57BL/6J dams were randomly allocated to fructose solution (10% wt/vol, n = 10) or water (n = 10) as the only drinking fluid from day 1 of pregnancy until delivery. After weaning, pups were started on regular chow, and evaluated at 1 year of life. We measured percent visceral adipose tissue and liver fat infiltrates using computed tomography, and blood pressure using CODA nonivasive monitor. Intraperitoneal glucose tolerance testing with corresponding insulin concentrations were obtained. Serum concentrations of glucose, insulin, triglycerides, total cholesterol, leptin, and adiponectin were measured in duplicate using standardized assays. Fasting homeostatic model assessment was also calculated to assess insulin resistance. P values <.05 were considered statistically significant.

      Results

      Maternal weight, pup number, and average weight at birth were similar between the 2 groups. Male and female fructose group offspring had higher peak glucose and area under the intraperitoneal glucose tolerance testing curve compared with control, and higher mean arterial pressure compared to control. Female fructose group offspring were heavier and had higher percent visceral adipose tissue, liver fat infiltrates, homeostatic model assessment of insulin resistance scores, insulin area under the intraperitoneal glucose tolerance testing curve, and serum concentrations of leptin, and lower concentrations of adiponectin compared to female control offspring. No significant differences in these parameters were noted in male offspring. Serum concentrations of triglycerides or total cholesterol were not different between the 2 groups for either gender.

      Conclusion

      Maternal intake of high fructose leads to fetal programming of adult obesity, hypertension, and metabolic dysfunction, all risk factors for cardiovascular disease. This fetal programming is more pronounced in female offspring. Limiting intake of high fructose–enriched diets in pregnancy may have significant impact on long-term health.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vuilleumier S.
        Worldwide production of high-fructose syrup and crystalline fructose.
        Am J Clin Nutr. 1993; 58: 733S-736S
        • Rizkalla S.W.
        Health implications of fructose consumption: a review of recent data.
        Nutr Metab. 2010; 7: 82
        • Ludwig D.S.
        • Peterson K.E.
        • Gortmaker S.L.
        Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis.
        Lancet. 2001; 357: 505-508
        • Guthrie J.F.
        • Morton J.F.
        Food sources of added sweeteners in the diets of Americans.
        J Am Diet Assoc. 2000; 100: 43-51
        • Boney C.M.
        • Verma A.
        • Tucker R.
        • Vohr B.R.
        Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus.
        Pediatrics. 2005; 115: e290-e296
        • Pollock N.K.
        • Bundy V.
        • Kanto W.
        • Davis C.L.
        • Bernard P.J.
        • Zhu H.
        • Gutin B.
        • Dong Y.
        Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents.
        J Nutr. 2012; 142: 251-257
        • Thorburn A.W.
        • Storlien L.H.
        • Jenkins A.B.
        • Khouri S.
        • Kraegen E.W.
        Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats.
        Am J Clin Nutr. 1989; 49: 1155-1163
        • Luo J.
        • Rizkalla S.W.
        • Lerer-Metzger M.
        • Boillot J.
        • Ardeleanu A.
        • Bruzzo F.
        • Chevalier A.
        • Slama G.
        A fructose-rich diet decreases insulin-stimulated glucose incorporation into lipids but not glucose transport in adipocytes of normal and diabetic rats.
        J Nutr. 1995; 125: 164-171
        • Bezerra R.M.
        • Ueno M.
        • Silva M.S.
        • Tavares D.Q.
        • Carvalho C.R.
        • Saad M.J.
        A high fructose diet affects the early steps of insulin action in muscle and liver of rats.
        J Nutr. 2000; 130: 1531-1535
        • Stanhope K.L.
        • Schwarz J.M.
        • Keim N.L.
        • et al.
        Consuming fructose sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/ obese humans.
        J Clin Invest. 2009; 119: 1322-1334
        • Teff K.L.
        • Elliott S.S.
        • Tschop M.
        • Kieffer T.J.
        • Rader D.
        • Heiman M.
        • Townsend R.R.
        • Keim N.L.
        • D’Alessio D.
        • Havel P.J.
        Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women.
        J Clin Endocrinol Metab. 2004; 89: 2963-2972
        • Langley S.C.
        • Jackson A.A.
        Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets.
        Clin Sci. 1994; 86: 217-222
        • Cambonie G.
        • Comte B.
        • Yzydorczyk C.
        • Ntimbane T.
        • Germain N.
        • Le N.L.
        • Pladys P.
        • Gauthier C.
        • Lahaie I.
        • Abran D.
        • Lavoie J.C.
        • Nuyt A.M.
        Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet.
        Am J Physiol Regul Integr Comp Physiol. 2007; 292: R1236-R1245
        • Theys N.
        • Ahn M.T.
        • Bouckenooghe T.
        • Reusens B.
        • Remacle C.
        Maternal malnutrition programs pancreatic islet mitochondrial dysfunction in the adult offspring.
        J Nutr Biochem. 2010; 22: 985-994
        • Howie G.J.
        • Sloboda D.M.
        • Kamal T.
        • Vickers M.H.
        Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet.
        J Physiol. 2009; 587: 905-915
        • Ashino N.G.
        • Saito K.N.
        • Souza F.D.
        • Nakutz F.S.
        • Roman E.A.
        • Velloso L.A.
        • Torsoni A.S.
        • Torsoni M.A.
        Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver.
        J Nutr Biochem. 2011; 23: 341-348
        • Chechi K.
        • Cheema S.K.
        Maternal diet rich in saturated fats has deleterious effects on plasma lipids of mice.
        Exp Clin Cardiol. 2006; 11: 129-135
        • Samuelsson A.M.
        • Matthews P.A.
        • Argenton M.
        • Christie M.R.
        • McConnell J.M.
        • Jansen E.H.
        • et al.
        Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming.
        Hypertension. 2008; 51: 383-392
        • Feng M.
        • Whitesall S.
        • Zhang Y.
        • Beibel M.
        • D’Alecy L.
        • DiPetrillo K.
        Validation of volume-pressure recording tail-cuff blood pressure measurements.
        Am J Hypertens. 2008; 21: 1288-1291
        • Lublinsky S.
        • Luu Y.
        • Rubin C.
        • Judex S.
        Automated separation of visceral and subcutaneous adiposity in in vivo microcomputed tomographies of mice.
        J Digit Imaging. 2009; 22: 222-231
        • Judex S.
        • Luu Y.K.
        • Ozcivici E.
        • Adler B.
        • Lub- linsky S.
        • Rubin C.T.
        Quantification of adiposity in small rodents using micro-CT.
        Methods. 2010; 50: 14-19
        • Lubura M.
        • Hesse D.
        • Neumann N.
        • Scher- neck S.
        • Wiedmer P.
        • Schermann A.
        Non-inva- sive quantification of white and brown adipose tissues and liver fat content by computed tomography in mice.
        PLoS One. 2012; 7: e37026
        • Turner R.C.
        • Holman R.R.
        • Matthews D.
        • Hockaday T.D.
        • Peto J.
        Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations.
        Metabolism. 1979; 28: 1086-1096
        • Akagiri S.
        • Naito Y.
        • Ichikawa H.
        • et al.
        A mouse model of metabolic syndrome; increase in visceral adipose tissue precedes the devel- opment of fatty liver and insulin resistance in high-fat diet-fed male KK/Ta mice.
        J Clin Biochem Nutr. 2008; 42: 150-157
        • Park K.-G.
        • Park K.S.
        • Kim M.-J.
        • Kim H.-S.
        • Suh Y.-S.
        • Ahn J.D.
        • Park K.-K.
        • Chang Y.-C.
        • Lee I.-K.
        Relationship between serum adiponectin and leptin concentrations and body fat distribution.
        Diabetes Res Clin Pract. 2004; 63: 135-142
        • Stephan B.C.
        • Wells J.C.
        • Brayne C.
        • Albanese E.
        • Siervo M.
        Increased fructose intake as a risk factor for dementia.
        J Gerontol A Biol Sci Med Sci. 2010; 65: 809-814
        • Rajasekar P.
        • Anuradha C.V.
        Fructose-induced hepatic gluconeogenesis. Effect of l-carnitine.
        Life Sci. 2007; 80: 1176-1183
        • Rawana S.
        • Clark K.
        • Zhong S.
        • Buison
        • Chackunkal S.
        • Jen K.L.
        Low dose fructose ingestion during gestation and lactation affects carbohydrate metabolism in rat dams and their offspring.
        J Nutr. 1993; 123: 2158-2165
        • Vickers M.H.
        • Clayton Z.E.
        • Yap C.
        • Sloboda D.M.
        Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function.
        Endocrinology. 2011; 152: 1378-1387
        • Ha V.
        • Jayalath V.H.
        • Cozma A.I.
        • Mirrahimi A.
        • de Souza R.J.
        • Sievenpiper J.L.
        Fructose-containing sugars, blood pressure, and cardiometabolic risk: A critical review.
        Curr Hypertens Rep. 2013; 15: 281-297
        • Yilmaz Y.
        Review article: Fructose in non-alcoholic fatty liver disease.
        Aliment Pharmacol Ther. 2012; 35: 1135-1144
        • Mori T.
        • Kondo H.
        • Hase T.
        • Murase T.
        Dietary phospholipids ameliorate fructose-induced hepatic lipid and metabolic abnormalities in rats.
        J. Nutr. 2011; 141: 2003-2009
        • Serra A.
        • Bryant N.
        • Motilva M.J.
        • Blumberg J.B.
        • Chen C.Y.
        Fetal programming of dietary fructose and saturated fat on hepatic quercetin glucuronidation in rats.
        Nutrition. 2012; 28: 1165-1171
        • Alzamendi A.
        • Castrogiovanni D.
        • Gaillard R.C.
        • Spinedi E.
        • Giovambattista A.
        Increased male offspring’s risk of metabolic– neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother.
        Endocrinology. 2010; 151: 4214-4223
        • Jürgens H.
        • Haass W.
        • Castañeda T.R.
        • et al.
        Consuming fructose-sweetened beverages increases body adiposity in mice.
        Obesity Research. 2005; 13: 1145-1156
        • Goran M.I.
        • Dumke K.
        • Bouret S.G.
        • Kayser B.
        • Walker R.W.
        • Blumberg B.
        The obesogenic effect of high fructose exposure during early development.
        Nat Rev Endocrinol. 2013;
        • Bray G.A.
        • Nielsen S.J.
        • Popkin B.M.
        Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.
        Am J Clin Nutr. 2004; 79: 537-543
        • Johnson R.J.
        • Segal M.S.
        • Sautin Y.
        • et al.
        Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease.
        Am J Clin Nutr. 2007; 86: 899-906
        • Wroblewska-Seniuk K.
        • Wender-Ozegowska E.
        • Szczapa J.
        Long-term effects of diabetes during pregnancy on the offspring.
        Pediatr. Diabetes. 2009; 10: 432-440
        • van den Berghe G.
        • Bronfman M.
        • Vanneste R.
        • Hers H.G.
        The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase.
        Biochem J. 1977; 162: 601-609
        • Abdelmalek M.F.
        • Lazo M.
        • Horska A.
        • et al.
        Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes.
        Hepatology. 2012; 56: 952-960
        • Cortez-Pinto H.
        • Chatham J.
        • Chacko V.P.
        • Arnold C.
        • Rashid A.
        • Diehl A.M.
        Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: A pilot study.
        JAMA. 1999; 282: 1659-1664
        • Nakagawa T.
        • Hu H.
        • Zharikov S.
        • et al.
        A causal role for uric acid in fructose-induced metabolic syndrome.
        Am J Physiol Renal Physiol. 2006; 290: F625-F631
        • Cox C.L.
        • Stanhope K.L.
        • Schwarz J.M.
        • et al.
        Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/ obese humans.
        Nutr Metab. 2012; 9: 68
        • Lanaspa M.A.
        • Sanchez-Lozada L.G.
        • Cicerchi C.
        • et al.
        Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver.
        PLoS ONE. 2012; 7: e47948
        • Choi H.K.
        • Curhan G.
        Soft drinks, fructose consumption, and the risk of gout in men: Prospective cohort study.
        BMJ. 2008; 336: 309-312
        • Choi H.K.
        • Willett W.
        • Curhan G.
        Fructose-rich beverages and risk of gout in women.
        JAMA. 2010; 304: 2270-2278
        • Bobridge K.S.
        • Haines G.L.
        • Mori T.A.
        • et al.
        Dietary fructose in relation to blood pressure and serum uric acid in adolescent boys and girls.
        J. Hum. Hypertens. 2013; 27: 217-224
        • Wei Y.
        • Wang D.
        • Topczewski F.
        • Pagliassotti M.J.
        Fructose mediated stress signaling in the liver: Implications for hepatic insulin resistance.
        J Nutr Biochem. 2007; 18: 1-9
        • Wang D.D.
        • Sievenpiper J.L.
        • de Souza R.J.
        • et al.
        The effects of fructose intake on serum uric acid vary among controlled dietary trials.
        J Nutr. 2012; 142: 916-923
        • Hirosumi J.
        • Tuncman G.
        • Chang L.
        • et al.
        A central role for JNK in obesity and insulin resistance.
        Nature. 2002; 420: 333-336
        • Clifton V.L.
        • Bisits A.
        • Zarzycki P.K.
        Characterization of human fetal cord blood steroid profiles in relation to fetal sex and mode of delivery using temperature-dependent inclusion chromatography and principal component analysis (PCA).
        J Chromatogr B Analyt Technol BiomedLife Sci. 2007; 855: 249-254
        • Geary M.P.
        • Pringle P.J.
        • Rodeck C.H.
        • Kingdom J.C.
        • Hindmarsh P.C.
        Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth.
        J Clin Endocrinol Metab. 2003; 88: 3708-3714
        • Murphy V.E.
        • Johnson R.F.
        • Wang Y.C.
        • Akinsanya K.
        • Gibson P.G.
        • Smith R.
        • et al.
        The effect of maternal asthma on placental and cord blood protein profiles.
        J Soc Gynecol Investig. 2005; 12: 349-355
        • Brandstätter A.
        • Kiechl S.
        • Kollerits B.
        • Hunt S.C.
        • Heid I.M.
        • Coassin S.
        • et al.
        Sex-Specific Association of the Putative Fructose Transporter SLC2A9 Variants With Uric Acid Levels Is Modified by BMI.
        Diabetes Care. 2008; 31: 1662-1667