Advertisement

Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers

Published:August 14, 2014DOI:https://doi.org/10.1016/j.ajog.2014.08.009

      Objective

      Obese women are at increased risk to deliver a large infant, however, the underlying mechanisms are poorly understood. Fetal glucose availability is critically dependent on placental transfer and is linked to fetal growth by regulating the release of fetal growth hormones such as insulin. We hypothesized that (1) umbilical vein glucose and insulin levels and (2) placental glucose transporter (GLUT) expression and activity are positively correlated with early pregnancy maternal body mass index and infant birthweight.

      Study Design

      Subjects in this prospective observational cohort study were nondiabetic predominantly Hispanic women delivered at term. Fasting maternal and umbilical vein glucose and insulin concentrations were determined in 29 women with varying early pregnancy body mass index (range, 18.0–54.3) who delivered infants with birthweights ranging from 2800–4402 g. We isolated syncytiotrophoblast microvillous and basal plasma membranes from 33 placentas and determined the expression of GLUT-1 and -9 (Western blot) and glucose uptake (radiolabeled glucose).

      Results

      Birthweight was positively correlated with umbilical vein glucose and insulin and maternal body mass index. Umbilical vein glucose levels were positively correlated with placental weight and maternal body mass index, but not with maternal fasting glucose. Basal plasma membranes GLUT-1 expression was positively correlated with birthweight. In contrast, syncytiotrophoblast microvillous GLUT-1 and -9, basal plasma membranes GLUT-9 expression and syncytiotrophoblast microvillous and basal plasma membranes glucose transport activity were not correlated with birthweight.

      Conclusion

      Because maternal fasting glucose levels and placental glucose transport capacity were not increased in obese women delivering larger infants, we speculate that increased placental size promotes glucose delivery to these fetuses.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Catalano P.M.
        Management of obesity in pregnancy.
        Obstet Gynecol. 2007; 109: 419-462
        • Boney C.M.
        • Verma A.
        • Tucker R.
        • Vohr B.R.
        Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus.
        Pediatrics. 2005; 115: e290-e296
        • Prendergast C.H.
        • Parker K.H.
        • Gray R.
        • et al.
        Glucose production by the human placenta in vivo.
        Placenta. 1999; 20: 591-598
        • Hauguel S.
        • Challier J.C.
        • Cedard L.
        • Olive G.
        Metabolism of the human placenta perfused in vitro: glucose transfer and utilization, O2 consumption, lactate and ammonia production.
        Pediatr Res. 1983; 17: 729-732
        • Pedersen J.
        Weight and length at birth of infants of diabetic mothers.
        Acta Endocrinol. 1954; 16: 330-342
        • Takata K.
        • Kasahara T.
        • Kasahara M.
        • Ezaki O.
        • Hirano H.
        Localization of erythrocyte/HepG2-type glucose transporter (GLUT1) in human placental villi.
        Cell Tissue Res. 1992; 267: 407-412
        • Jansson T.
        • Wennergren M.
        • Illsley N.P.
        Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth restriction.
        J Clin Endocrinol Metab. 1993; 77: 1554-1562
        • Johnson L.W.
        • Smith C.H.
        Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast.
        Biochem Biophys Acta. 1985; 815: 44-50
        • Day P.E.
        • Cleal J.K.
        • Lofthouse E.M.
        • Hanson M.A.
        • Lewis R.M.
        What factors determine placental glucose transfer.
        Placenta. 2013; 40: 391-396
        • Schneider H.
        • Reiber W.
        • Sager R.
        • Malek A.
        Asymmetrical transport of glucose across the in vitro perfused human placenta.
        Placenta. 2003; 24: 27-33
        • Jansson T.
        • Wennergren M.
        • Powell T.L.
        Placental glucose transport and GLUT1 expression in insulin-dependent diabetes.
        Am J Obstet Gynecol. 1999; 180: 163-168
        • Gaither K.
        • Quraishi A.N.
        • Illsley N.P.
        Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter.
        J Clin Endocrinol Metab. 1999; 84: 695-701
        • Augustin R.
        • Carayannopoulos M.O.
        • Dowd L.O.
        • Phay J.E.
        • Moley J.F.
        • Moley K.H.
        Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.
        J Biol Chem. 2004; 279: 16229-16236
        • Bibee K.P.
        • Illsley N.P.
        • Moley K.H.
        Asymmetric syncytial expression of GLUT9 splice variants in human term placenta and alterations in diabetic pregnancies.
        Reprod Sci. 2011; 18: 20-27
        • Metzger B.E.
        • Lowe L.P.
        • Dyer A.R.
        • et al.
        Hyperglycemia and adverse pregnancy outcomes.
        N Engl J Med. 2008; 358: 1991-2002
        • Catalano P.M.
        • Ehrenberg H.M.
        The short and long term implications of maternal obesity on the mother and her offspring.
        BJOG. 2006; 113: 1126-1133
        • Illsley N.P.
        • Wang Z.Q.
        • Gray A.
        • Sellers M.C.
        • Jacobs M.M.
        Simultaneous preparation of paired, syncytial, microvillous and basal membranes from human placenta.
        Biochem Biophys Acta. 1990; 1029: 218-226
        • Bastin J.
        • Drakesmith H.
        • Rees M.
        • Sargent I.
        • Townsend A.
        Localisation of proteins of iron metabolism in the human placenta and liver.
        Br J Haematol. 2006; 134: 532-543
        • Donovan A.
        • Brownlie A.
        • Zhou Y.
        • et al.
        Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter.
        Nature. 2000; 403: 776-781
        • Bradley J.
        • Leibold E.A.
        • Harris Z.L.
        • et al.
        Influence of gestational age and fetal iron status on IRP activity and iron transporter protein expression in third-trimester human placenta.
        Am J Physiol Regul Integr Comp Physiol. 2004; 287: R894-R901
        • Lanoix D.
        • St-Pierre J.
        • Lacasse A.A.
        • Viau M.
        • Lafond J.
        • Vaillancourt C.
        Stability of reference proteins in human placenta: general protein stains are the benchmark.
        Placenta. 2012; 33: 151-156
        • Skovlund E.
        • Fenstad G.U.
        Should we always choose a nonparametric test when comparing two apparently nonnormal distributions?.
        J Clin Epidemiol. 2001; 54: 86-92
        • Jansson T.
        • Ylven K.
        • Wennergren M.
        • Powell T.L.
        Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membrane in intrauterine growth restriction.
        Placenta. 2002; 23: 392-399
        • Overpeck M.D.
        • Hediger M.L.
        • Zhang J.
        • Trumble A.C.
        • Klebanoff M.A.
        Birth weight for gestational age of Mexican American infants born in the United States.
        Obstet Gynecol. 1999; 93: 943-947
        • Dennedy M.C.
        • Avalos G.
        • O'Reilly M.W.
        • O'Sullivan E.P.
        • Gaffney G.
        • Dunne F.
        ATLANTIC-DIP: raised maternal body index (BMI) adversely affects maternal and fetal outcomes in glucose-tolerant women according to International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria.
        J Clin Endocrinol Metab. 2012; 97: E608-E612
        • Stuebe A.M.
        • Landon M.B.
        • Lai Y.
        • et al.
        Maternal BMI, glucose tolerance, and adverse pregnancy outcomes.
        Am J Obstet Gynecol. 2012; 207: 62.e1-62.e7
        • Walsh J.M.
        • Mahony R.
        • Byrne J.
        • Foley M.
        • McAuliffe F.M.
        The association of maternal and fetal glucose homeostasis with fetal adiposity and birthweight.
        Eur J Obstet Gynecol Reprod Biol. 2011; 159: 338-341
        • Vardhana P.A.
        • Illsey N.P.
        Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells.
        Placenta. 2002; 23: 653-660
        • Barta E.
        • Drugan A.
        Glucose transport from mother to fetus- a theoretical study.
        J Theor Biol. 2010; 263: 295-302
        • Webster R.P.
        • Roberts V.H.
        • Myatt L.
        Protein nitration in placenta-functional significance.
        Placenta. 2008; 29: 985-994
        • Desforges M.
        • Ditchfield A.
        • Hirst C.R.
        • et al.
        Reduced placental taurine transporter (TauT) activity in pregnancies complicated by pre-eclampsia and maternal obesity.
        Adv Exp Med Biol. 2013; 776: 81-91
        • Swanson L.D.
        • Bewtra C.
        Increase in normal placental weights related to increase in maternal body mass index.
        J Matern Fetal Neonatal Med. 2008; 21: 111-113
        • Catalano P.M.
        • Presley L.
        • Minium J.
        • Hauguel-de Mouzon S.
        Fetuses of obese mothers develop insulin resistance in utero.
        Diabetes Care. 2009; 32: 1076-1080
        • Challier J.C.
        • Basu S.
        • Bintein T.
        Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta.
        Placenta. 2008; 29: 274-278
        • Roberts K.A.
        • Riley S.C.
        • Reynolds R.M.
        • et al.
        Placental structure and inflammation in pregnancies associated with obesity.
        Placenta. 2011; 32: 247-254