Advertisement

Comprehensive analysis of LAMC1 genetic variants in advanced pelvic organ prolapse

Published:February 10, 2012DOI:https://doi.org/10.1016/j.ajog.2012.01.033

      Objective

      We sought to comprehensively evaluate the association of laminin gamma-1 (LAMC1) and advance pelvic organ prolapse.

      Study Design

      We conducted a candidate gene association of patients (n = 239) with stages III-IV prolapse and controls (n = 197) with stages 0-I prolapse. We used a linkage disequilibrium (LD)–tagged approach to identify single-nucleotide polymorphisms (SNPs) in LAMC1 and focused on non-Hispanic white women to minimize population stratification. Additive and dominant multivariable logistic regression models were used to test for association between individual SNPs and advanced prolapse.

      Results

      Fourteen SNPs representing 99% coverage of LAMC1 were genotyped. There was no association between SNP rs10911193 and advanced prolapse (P = .34). However, there was a trend toward significance for SNPs rs1413390 (P = .11), rs20563 (P = .11), and rs20558 (P = .12).

      Conclusion

      Although we found that the previously reported LAMC1 SNP rs10911193 was not associated with nonfamilial prolapse, our results support further investigation of this candidate gene in the pathophysiology of prolapse.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hendrix S.L.
        • Clark A.
        • Nygaard I.
        • Aragaki A.
        • Barnabei V.
        • McTiernan A.
        Pelvic organ prolapse in the Women's Health Initiative: gravity and gravidity.
        Am J Obstet Gynecol. 2002; 186: 1160-1166
        • Jelovsek J.E.
        • Maher C.
        • Barber M.D.
        Pelvic organ prolapse.
        Lancet. 2007; 369: 1027-1038
        • Olsen A.L.
        • Smith V.J.
        • Bergstrom J.O.
        • Colling J.C.
        • Clark A.L.
        Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence.
        Obstet Gynecol. 1997; 89: 501-506
        • Subak L.L.
        • Waetjen L.E.
        • van den Eeden S.
        • Thom D.H.
        • Vittinghoff E.
        • Brown J.S.
        Cost of pelvic organ prolapse surgery in the United States.
        Obstet Gynecol. 2001; 98: 646-651
        • Jack G.S.
        • Nikolova G.
        • Vilain E.
        • Raz S.
        • Rodriguez L.V.
        Familial transmission of genitovaginal prolapse.
        Int Urogynecol J Pelvic Floor Dysfunct. 2006; 17: 498-501
        • Chiaffarino F.
        • Chatenoud L.
        • Dindelli M.
        • et al.
        Reproductive factors, family history, occupation and risk of urogenital prolapse.
        Eur J Obstet Gynecol Reprod Biol. 1999; 82: 63-67
        • Buchsbaum G.M.
        • Duecy E.E.
        • Kerr L.A.
        • Huang L.S.
        • Perevich M.
        • Guzick D.S.
        Pelvic organ prolapse in nulliparous women and their parous sisters.
        Obstet Gynecol. 2006; 108: 1388-1393
        • McLennan M.T.
        • Harris J.K.
        • Kariuki B.
        • Meyer S.
        Family history as a risk factor for pelvic organ prolapse.
        Int Urogynecol J Pelvic Floor Dysfunct. 2008; 19: 1063-1069
        • Nikolova G.
        • Lee H.
        • Berkovitz S.
        • et al.
        Sequence variant in the laminin gamma1 (LAMC1) gene associated with familial pelvic organ prolapse.
        Hum Genet. 2007; 120: 847-856
        • Norton P.
        • Allen-Brady K.
        • Cannon-Albright L.
        Significant linkage evidence of a predisposition gene for pelvic floor disorders on chromosome 9.
        J Pelvic Med Surg. 2008; 14: 219
        • Moalli P.A.
        • Shand S.H.
        • Zyczynski H.M.
        • Gordy S.C.
        • Meyn L.A.
        Remodeling of vaginal connective tissue in patients with prolapse.
        Obstet Gynecol. 2005; 106: 953-963
        • Liu X.
        • Zhao Y.
        • Pawlyk B.
        • Damaser M.
        • Li T.
        Failure of elastic fiber homeostasis leads to pelvic floor disorders.
        Am J Pathol. 2006; 168: 519-528
        • Budatha M.
        • Roshanravan S.
        • Zheng Q.
        • et al.
        Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans.
        J Clin Invest. 2011; 121: 2048-2059
        • Chen C.
        • Hill L.D.
        • Schubert C.M.
        • Strauss 3rd, J.F.
        • Matthews C.A.
        Is laminin gamma-1 a candidate gene for advanced pelvic organ prolapse?.
        Am J Obstet Gynecol. 2010; 202: 505.e1-505.e5
        • Hattersley A.T.
        • McCarthy M.I.
        What makes a good genetic association study?.
        Lancet. 2005; 366: 1315-1323
        • Hauser E.R.
        • Crossman D.C.
        • Granger C.B.
        • et al.
        A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD Study.
        Am J Hum Genet. 2004; 75: 436-447
        • Shah S.H.
        • Kraus W.E.
        • Crossman D.C.
        • et al.
        Serum lipids in the GENECARD study of coronary artery disease identify quantitative trait loci and phenotypic subsets on chromosomes 3q and 5q.
        Ann Hum Genet. 2006; 70: 738-748
        • Cardon L.R.
        • Palmer L.J.
        Population stratification and spurious allelic association.
        Lancet. 2003; 361: 598-604
        • Lee W.C.
        • Wang L.Y.
        Reducing population stratification bias: stratum matching is better than exposure.
        J Clin Epidemiol. 2009; 62: 62-66
        • Carlson C.S.
        • Eberle M.A.
        • Rieder M.J.
        • Yi Q.
        • Kruglyak L.
        • Nickerson D.A.
        Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium.
        Am J Hum Genet. 2004; 74: 106-120
        • Xu H.
        • Gregory S.G.
        • Hauser E.R.
        • et al.
        SNPselector: a web tool for selecting SNPs for genetic association studies.
        Bioinformatics. 2005; 21: 4181-4186
        • Meng Z.
        • Zaykin D.V.
        • Xu C.F.
        • Wagner M.
        • Ehm M.G.
        Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes.
        Am J Hum Genet. 2003; 73: 115-130
        • de Bakker P.I.
        • Yelensky R.
        • Pe'er I.
        • Gabriel S.B.
        • Daly M.J.
        • Altshuler D.
        Efficiency and power in genetic association studies.
        Nat Genet. 2005; 37: 1217-1223
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • et al.
        PLINK: a tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Cohen J.
        • Pertsemlidis A.
        • Kotowski I.K.
        • Graham R.
        • Garcia C.K.
        • Hobbs H.H.
        Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9.
        Nat Genet. 2005; 37: 161-165
        • National Center for Biotechnology Information
        LAMC1 laminin, gamma 1.
        (Accessed July 5, 2011)
        • Kumar P.
        • Henikoff S.
        • Ng P.C.
        Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
        Nat Protoc. 2009; 4: 1073-1081
        • Adzhubei I.A.
        • Schmidt S.
        • Peshkin L.
        • et al.
        A method and server for predicting damaging missense mutations.
        Nat Methods. 2010; 7: 248-249
        • Ensembl
        Variation rs20558, Genomic context, gene/transcript.
        (Accessed Jan. 9, 2012)
        • Ensembl
        Variation rs20563, Genomic context, gene/transcript.
        (Accessed Jan. 12, 2012)
        • Helgadottir A.
        • Thorleifsson G.
        • Manolescu A.
        • et al.
        A common variant on chromosome 9p21 affects the risk of myocardial infarction.
        Science. 2007; 316: 1491-1493
        • Kluivers K.B.
        • Dijkstra J.R.
        • Hendriks J.C.
        • Lince S.L.
        • Vierhout M.E.
        • van Kempen L.C.
        COL3A1 2209G>A is a predictor of pelvic organ prolapse.
        Int Urogynecol J Pelvic Floor Dysfunct. 2009; 20: 1113-1118
        • Chen H.Y.
        • Chung Y.W.
        • Lin W.Y.
        • Wang J.C.
        • Tsai F.J.
        • Tsai C.H.
        Collagen type 3 alpha 1 polymorphism and risk of pelvic organ prolapse.
        Int J Gynaecol Obstet. 2008; 103: 55-58
        • Feiner B.
        • Fares F.
        • Azam N.
        • Auslender R.
        • David M.
        • Abramov Y.
        Does COLIA1 SP1-binding site polymorphism predispose women to pelvic organ prolapse?.
        Int Urogynecol J Pelvic Floor Dysfunct. 2009; 20: 1061-1065
        • Rodrigues A.M.
        • Girao M.J.
        • da Silva I.D.
        • Sartori M.G.
        • Martins K.D.
        • Castro R.D.
        COL1A1 Sp1-binding site polymorphism as a risk factor for genital prolapse.
        Int Urogynecol J Pelvic Floor Dysfunct. 2008; 19: 1471-1475
        • Chen H.Y.
        • Lin W.Y.
        • Chen Y.H.
        • Chen W.C.
        • Tsai F.J.
        • Tsai C.H.
        Matrix metalloproteinase-9 polymorphism and risk of pelvic organ prolapse in Taiwanese women.
        Eur J Obstet Gynecol Reprod Biol. 2010; 149: 222-224
        • Liu X.
        • Zhao Y.
        • Gao J.
        • et al.
        Elastic fiber homeostasis requires lysyl oxidase-like 1 protein.
        Nat Genet. 2004; 36: 178-182
        • Rahn D.D.
        • Acevedo J.F.
        • Roshanravan S.
        • et al.
        Failure of pelvic organ support in mice deficient in fibulin-3.
        Am J Pathol. 2009; 174: 206-215
        • Drewes P.G.
        • Yanagisawa H.
        • Starcher B.
        • et al.
        Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina.
        Am J Pathol. 2007; 170: 578-589