Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration


      Mesenchymal stem cells (MSCs) have a broad differentiation potential. We aimed to determine if MSCs are present in fetal membranes and placental tissue and to assess their potential to differentiate into neurogenic and mesodermal lineages.

      Study design

      MSCs isolated from first and third trimester chorion and amnion and first trimester chorionic villi and characterized morphologically and by flourescence-activated cell sorting analysis. Their ability to mature under different culture conditions into various cells of mesodermal and neuroectodermal cell lines was assessed by immuno- and cytochemical staining.


      Independent of gestational age, cells isolated from fetal membranes and placenta showed typical MSC phenotype (positive for CD166, CD105, CD90, CD73, CD49e, CD44, CD29, CD13, MHC I; negative for CD14, CD34, CD45, MHC II) and were able to differentiate into mesodermal cells expressing cell markers/cytologic staining consistent with mature chondroblasts, osteoblasts, adipocytes, or myocytes and into neuronal cells presenting markers of various stages of maturation. The differentiation pattern was mainly dependent on cell type.


      Mesenchymal cells from chorion, amnion, and villous stroma can be differentiated into neurogenic, chondrogenic, osteogenic, adipogenic, and myogenic lineage. Placental tissue obtained during prenatal chorionic villous sampling or at delivery might be an ideal source for autologous stem cell graft for peripartum neuroregeneration and other clinical issues.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Obstetrics & Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • Schwartz R.E.
        • Keene C.D.
        • Ortiz-Gonzalez X.R.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418: 41-49
        • Surbek D.V.
        • Holzgreve W.
        • Jansen W.
        • Heim D.
        • Garritsen H.
        • Nissen C.
        • et al.
        Quantitative immunophenotypic characterization, cryopreservation, and enrichment of second- and third-trimester human fetal cord blood hematopoietic stem cells (progenitor cells).
        Am J Obstet Gynecol. 1998; 179: 1228-1233
        • Campagnoli C.
        • Roberts I.A.
        • Kumar S.
        • Bennett P.R.
        • Bellantuono I.
        • Fisk N.M.
        Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow.
        Blood. 2001; 98: 2396-2402
        • Yen B.L.
        • Huang H.I.
        • Chien C.C.
        • Jui H.Y.
        • Ko B.S.
        • Yao M.
        • et al.
        Isolation of multipotent cells from human term placenta.
        Stem Cells. 2005; 23: 3-9
        • Surbek D.V.
        • Holzgreve W.
        • Nicolaides K.H.
        Haematopoietic stem cell transplantation and gene therapy in the fetus: ready for clinical use?.
        Hum Reprod Update. 2001; 7: 85-91
        • Liechty K.W.
        • MacKenzie T.C.
        • Shaaban A.F.
        • Radu A.
        • Moseley A.M.
        • Deans R.
        • et al.
        Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.
        Nat Med. 2000; 6: 1282-1286
        • Schoeberlein A.
        • Holzgreve W.
        • Dudler L.
        • Hahn S.
        • Surbek D.V.
        Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses.
        Am J Obstet Gynecol. 2005; 192: 1044-1052
        • Volpe J.J.
        Neurobiology of periventricular leukomalacia in the premature infant.
        Pediatr Res. 2001; 50: 553-562
        • Toso L.
        • Poggi S.
        • Park J.
        • Einat H.
        • Roberson R.
        • Dunlap V.
        • et al.
        Inflammatory-mediated model of cerebral palsy with developmental sequelae.
        Am J Obstet Gynecol. 2005; 193: 933-941
        • Schwartz M.L.
        • Vaccarino F.
        • Chacon M.
        • Yan W.L.
        • Ment L.R.
        • Stewart W.B.
        Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex.
        Semin Perinatol. 2004; 28: 379-388
        • Lindvall O.
        • Kokaia Z.
        • Martinez-Serrano A.
        Stem cell therapy for human neurodegenerative disorders-how to make it work.
        Nat Med. 2004; 10: S42-S50
        • Munoz-Elias G.
        • Marcus A.J.
        • Coyne T.M.
        • Woodbury D.
        • Black I.B.
        Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival.
        J Neurosci. 2004; 24: 4585-4595
        • Woodbury D.
        • Schwarz E.J.
        • Prockop D.J.
        • Black I.B.
        Adult rat and human bone marrow stromal cells differentiate into neurons.
        J Neurosci Res. 2000; 61: 364-370
        • Le Blanc K.
        Immunomodulatory effects of fetal and adult mesenchymal stem cells.
        Cytotherapy. 2003; 5: 485-489
        • Kubo M.
        • Sonoda Y.
        • Muramatsu R.
        • Usui M.
        Immunogenicity of human amniotic membrane in experimental xenotransplantation.
        Invest Ophthalmol Vis Sci. 2001; 42: 1539-1546
        • Houlihan J.M.
        • Biro P.A.
        • Harper H.M.
        • Jenkinson H.J.
        • Holmes C.H.
        The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G.
        J Immunol. 1995; 154: 5665-5674
        • Miki T.
        • Lehmann T.
        • Cai H.
        • Stolz D.B.
        • Strom S.C.
        Stem cell characteristics of amniotic epithelial cells.
        Stem Cells. 2005; 23: 1549-1559
        • Tamagawa T.
        • Ishiwata I.
        • Saito S.
        Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro.
        Hum Cell. 2004; 17: 125-130
        • Sakuragawa N.
        • Thangavel R.
        • Mizuguchi M.
        • Hirasawa M.
        • Kamo I.
        Expression of markers for both neuronal and glial cells in human amniotic epithelial cells.
        Neurosci Lett. 1996; 209: 9-12
        • Okawa H.
        • Okuda O.
        • Arai H.
        • Sakuragawa N.
        • Sato K.
        Amniotic epithelial cells transform into neuron-like cells in the ischemic brain.
        Neuroreport. 2001; 12: 4003-4007
        • Kakishita K.
        • Elwan M.A.
        • Nakao N.
        • Itakura T.
        • Sakuragawa N.
        Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy.
        Exp Neurol. 2000; 165: 27-34
        • Sankar V.
        • Muthusamy R.
        Role of human amniotic epithelial cell transplantation in spinal cord injury repair research.
        Neuroscience. 2003; 118: 11-17
        • Sakuragawa N.
        • Kakinuma K.
        • Kikuchi A.
        • Okano H.
        • Uchida S.
        • Kamo I.
        • et al.
        Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells.
        J Neurosci Res. 2004; 78: 208-214
        • Bailo M.
        • Soncini M.
        • Vertua E.
        • Signoroni P.B.
        • Sanzone S.
        • Lombardi G.
        • et al.
        Engraftment potential of human amnion and chorion cells derived from term placenta.
        Transplantation. 2004; 78: 1439-1448
        • In't Anker P.S.
        • Scherjon S.A.
        • Kleijburg-van der Keur C.
        • Noort W.A.
        • Claas F.H.
        • Willemze R.
        • et al.
        Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation.
        Blood. 2003; 102: 1548-1549
        • Romanov Y.A.
        • Svintsitskaya V.A.
        • Smirnov V.N.
        Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord.
        Stem Cells. 2003; 21: 105-110